Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/70548
Tipo: Artigo de Periódico
Título : Deep reinforcement learning for QoS-Constrained resource allocation in multiservice networks
Autor : Saraiva, Juno Vitorino
Braga Júnior, Iran Mesquita
Monteiro, Victor Farias
Lima, Francisco Rafael Marques
Maciel, Tarcísio Ferreira
Freitas Júnior, Walter da Cruz
Cavalcanti, Francisco Rodrigo Porto
Palabras clave : Radio resource allocation;Quality of service;Satisfaction guarantees;Reinforcement learning;Deep Q-learning
Fecha de publicación : 2020
Editorial : Journal of Communication and Information Systems
Citación : CAVALCANTI, F. R. P. et al. Deep reinforcement learning for QoS-Constrained resource allocation in multiservice networks. Journal of Communication and Information Systems, [s.l.], v. 35, n. 1, p. 66-76, 2020. DOI: https://doi.org/10.14209/jcis.2020.7
Abstract: In this article, we study a Radio Resource Allocation (RRA) that was formulated as a non-convex optimization problem whose main aim is to maximize the spectral efficiency subject to satisfaction guarantees in multiservice wireless systems. This problem has already been previously investigated in the literature and efficient heuristics have been proposed. However, in order to assess the performance of Machine Learning (ML) algorithms when solving optimization problems in the context of RRA, we revisit that problem and propose a solution based on a Reinforcement Learning (RL) framework. Specifically, a distributed optimization method based on multi-agent deep RL is developed, where each agent makes its decisions to find a policy by interacting with the local environment, until reaching convergence. Thus, this article focuses on an application of RL and our main proposal consists in a new deep RL based approach to jointly deal with RRA, satisfaction guarantees and Quality of Service (QoS) constraints in multiservice celular networks. Lastly, through computational simulations we compare the state-of-art solutions of the literature with our proposal and we show a near optimal performance of the latter in terms of throughput and outage rate.
URI : http://www.repositorio.ufc.br/handle/riufc/70548
ISSN : 1980-6604
Aparece en las colecciones: DETE - Artigos publicados em revista científica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2020_art_frrpcavalcanti.pdf1,73 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.