Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/70548
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSaraiva, Juno Vitorino-
dc.contributor.authorBraga Júnior, Iran Mesquita-
dc.contributor.authorMonteiro, Victor Farias-
dc.contributor.authorLima, Francisco Rafael Marques-
dc.contributor.authorMaciel, Tarcísio Ferreira-
dc.contributor.authorFreitas Júnior, Walter da Cruz-
dc.contributor.authorCavalcanti, Francisco Rodrigo Porto-
dc.date.accessioned2023-02-08T12:47:20Z-
dc.date.available2023-02-08T12:47:20Z-
dc.date.issued2020-
dc.identifier.citationCAVALCANTI, F. R. P. et al. Deep reinforcement learning for QoS-Constrained resource allocation in multiservice networks. Journal of Communication and Information Systems, [s.l.], v. 35, n. 1, p. 66-76, 2020. DOI: https://doi.org/10.14209/jcis.2020.7pt_BR
dc.identifier.issn1980-6604-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/70548-
dc.description.abstractIn this article, we study a Radio Resource Allocation (RRA) that was formulated as a non-convex optimization problem whose main aim is to maximize the spectral efficiency subject to satisfaction guarantees in multiservice wireless systems. This problem has already been previously investigated in the literature and efficient heuristics have been proposed. However, in order to assess the performance of Machine Learning (ML) algorithms when solving optimization problems in the context of RRA, we revisit that problem and propose a solution based on a Reinforcement Learning (RL) framework. Specifically, a distributed optimization method based on multi-agent deep RL is developed, where each agent makes its decisions to find a policy by interacting with the local environment, until reaching convergence. Thus, this article focuses on an application of RL and our main proposal consists in a new deep RL based approach to jointly deal with RRA, satisfaction guarantees and Quality of Service (QoS) constraints in multiservice celular networks. Lastly, through computational simulations we compare the state-of-art solutions of the literature with our proposal and we show a near optimal performance of the latter in terms of throughput and outage rate.pt_BR
dc.language.isoenpt_BR
dc.publisherJournal of Communication and Information Systemspt_BR
dc.subjectRadio resource allocationpt_BR
dc.subjectQuality of servicept_BR
dc.subjectSatisfaction guaranteespt_BR
dc.subjectReinforcement learningpt_BR
dc.subjectDeep Q-learningpt_BR
dc.titleDeep reinforcement learning for QoS-Constrained resource allocation in multiservice networkspt_BR
dc.typeArtigo de Periódicopt_BR
Aparece nas coleções:DETE - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2020_art_frrpcavalcanti.pdf1,73 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.