Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/69519
Tipo: | Artigo de Evento |
Título: | Distributed large-scale tensor decomposition |
Autor(es): | Almeida, André Lima Férrer de Kibangou, Alain |
Palavras-chave: | Tensor decompositions;Large-scale data;Distributed computation |
Data do documento: | 2014 |
Instituição/Editor/Publicador: | International Conference on Acoustics, Speech and Signal Processing |
Citação: | ALMEIDA, A. L. F.; KIBANGOU, A. Distributed large-scale tensor decomposition. In: INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, 2014, Florença. Anais... Florença: IEEE, 2014. |
Abstract: | Canonical Polyadic Decomposition (CPD), also known as PARAFAC, is a useful tool for tensor factorization. It has found application in several domains including signal processing and data mining. With the deluge of data faced in our societies, large-scale matrix and tensor factorizations become a crucial issue. Few works have been devoted to large-scale tensor factorizations. In this paper, we introduce a fully distributed method to compute the CPD of a large-scale data tensor across a network of machines with limited computation resources. The proposed approach is based on collaboration between the machines in the network across the three modes of the data tensor. Such a multi-modal collaboration allows an essentially unique reconstruction of the factor matrices in an efficient way. We provide an analysis of the computation and communication cost of the proposed scheme and address the problem of minimizing communication costs while maximizing the use of available computation resources. |
URI: | http://www.repositorio.ufc.br/handle/riufc/69519 |
Aparece nas coleções: | DETE - Trabalhos apresentados em eventos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2014_eve_alfalmeida.pdf | 156,68 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.