Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/69519
Tipo: Artigo de Evento
Título : Distributed large-scale tensor decomposition
Autor : Almeida, André Lima Férrer de
Kibangou, Alain
Palabras clave : Tensor decompositions;Large-scale data;Distributed computation
Fecha de publicación : 2014
Editorial : International Conference on Acoustics, Speech and Signal Processing
Citación : ALMEIDA, A. L. F.; KIBANGOU, A. Distributed large-scale tensor decomposition. In: INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, 2014, Florença. Anais... Florença: IEEE, 2014.
Abstract: Canonical Polyadic Decomposition (CPD), also known as PARAFAC, is a useful tool for tensor factorization. It has found application in several domains including signal processing and data mining. With the deluge of data faced in our societies, large-scale matrix and tensor factorizations become a crucial issue. Few works have been devoted to large-scale tensor factorizations. In this paper, we introduce a fully distributed method to compute the CPD of a large-scale data tensor across a network of machines with limited computation resources. The proposed approach is based on collaboration between the machines in the network across the three modes of the data tensor. Such a multi-modal collaboration allows an essentially unique reconstruction of the factor matrices in an efficient way. We provide an analysis of the computation and communication cost of the proposed scheme and address the problem of minimizing communication costs while maximizing the use of available computation resources.
URI : http://www.repositorio.ufc.br/handle/riufc/69519
Aparece en las colecciones: DETE - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2014_eve_alfalmeida.pdf156,68 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.