Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/68292
Tipo: | Artigo de Periódico |
Título : | Ranking product systems based on uncertain life cycle sustainability assessment: a stochastic multiple criteria decision analysis approach |
Otros títulos : | Ranqueamentos de sistemas de produtos baseado na avaliação da sustentabilidade do ciclo de vida: tomada de decisão estocástica baseada em múltiplos critérios |
Autor : | Carmo, Breno Barros Telles do Margni, Manuele Baptiste, Pierre |
Palabras clave : | Life cycle sustainability assessment;Multiple criteria decision analysis;Uncertainty;Decision - Making |
Fecha de publicación : | 2020 |
Editorial : | Revista de Administração da UFSM |
Citación : | CARMO, B. B. T.; MARGNI, M.; BAPTISTE, P. Ranking product systems based on uncertain life cycle sustainability assessment: a stochastic multiple criteria decision analysis approach. Revista de Administração da UFSM, vol. 13, n. 4, p. 850-874, out./dez. 2020. DOI: 10.5902/1983465955294 |
Abstract: | Purpose – Life cycle sustainability assessment (LCSA) provides useful and comprehensive information on product system performance. However, it poses several challenges for decision-making process due to (i) multidimensional indicators, (ii) conflicting objectives and (iii) uncertainty associated with the performance assessment. This research proposes an approach able to account uncertain life cycle sustainability performances through multiple criteria decision analysis (MCDA) process to support decision-making. Design/methodology/approach – Our method is structured in three phases: i) assessing the uncertainty of LCSA performances, ii) propagating LCSA uncertainty into MCDA methods and iii) interpreting the stochastic results. The approach is applied on an illustrative case study, ranking four alternatives to biodiesel supply. Findings –The recommendation generated by this approach provides an information about the confidence the decision maker can have in a given result (ranking of solutions) under the form of a probability, providing a better knowledge of the risk (in this case due to the uncertainty of the preferred solution). As such, stochastic results, if appropriately interpreted, provide a measure of the robustness of the rankings generated by MCDA methods, overcoming the limitation of the overconfidence of deterministic rankings. Originality/value – The fundamental contributions of this paper are to (i) integrate LCSA uncertainty into decision-making processes through MCDA approach; (ii) provide a sensitivity analysis about the MCDA method choice, (iii) support decision-makers’ preference choices through a transparent elicitation process and (iv) provide a practical decision-making platform that accounts simultaneously uncertain LCSA performances with stakeholders’ value judgments. |
URI : | http://www.repositorio.ufc.br/handle/riufc/68292 |
ISSN : | 1983-4659 |
Aparece en las colecciones: | DEPR - Artigos publicados em revistas científicas |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2020_art_bbtcarmo.pdf | 945,42 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.