Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/48855
Tipo: Artigo de Periódico
Título : Bayesian inference on dynamic linear models of day-to-day origin-destination flows in transportation networks
Autor : Pitombeira Neto, Anselmo Ramalho
Loureiro, Carlos Felipe Grangeiro
Carvalho, Luís Eduardo Ximenes
Palabras clave : Modelos lineares (Estatística);Inferência Bayesiana;Transportes;Bayesian inference;Origin–destination flows;Dynamic linear models;Transportation networks
Fecha de publicación : 2018
Editorial : Urban Science
Citación : PITOMBEIRA NETO, A. R.; LOUREIRO, C. F. G.; CARVALHO, L. E. Bayesian inference on dynamic linear models of day-to-day origin-destination flows in transportation networks. Urban Science, v. 2, n. 4, dez. 2018.
Abstract: Estimation of origin–destination (OD) demand plays a key role in successful transportation studies. In this paper, we consider the estimation of time-varying day-to-day OD flows given data on traffic volumes in a transportation network for a sequence of days. We propose a dynamic linear model (DLM) in order to represent the stochastic evolution of OD flows over time. DLMs are Bayesian state-space models which can capture non-stationarity. We take into account the hierarchical relationships between the distribution of OD flows among routes and the assignment of traffic volumes on links. Route choice probabilities are obtained through a utility model based on past route costs. We propose a Markov chain Monte Carlo algorithm, which integrates Gibbs sampling and a forward filtering backward sampling technique, in order to approximate the joint posterior distribution of mean OD flows and parameters of the route choice model. Our approach can be applied to congested networks and in the case when data are available on only a subset of links. We illustrate the application of our approach through simulated experiments on a test network from the literature.
URI : http://www.repositorio.ufc.br/handle/riufc/48855
ISSN : 2413-8851
Derechos de acceso: Acesso Aberto
Aparece en las colecciones: DECC - Artigos publicados em revistas científicas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2018_art_arpitombeiraneto.pdf539,58 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.