Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/48855
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorPitombeira Neto, Anselmo Ramalho-
dc.contributor.authorLoureiro, Carlos Felipe Grangeiro-
dc.contributor.authorCarvalho, Luís Eduardo Ximenes-
dc.date.accessioned2019-12-18T15:43:18Z-
dc.date.available2019-12-18T15:43:18Z-
dc.date.issued2018-
dc.identifier.citationPITOMBEIRA NETO, A. R.; LOUREIRO, C. F. G.; CARVALHO, L. E. Bayesian inference on dynamic linear models of day-to-day origin-destination flows in transportation networks. Urban Science, v. 2, n. 4, dez. 2018.pt_BR
dc.identifier.issn2413-8851-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/48855-
dc.description.abstractEstimation of origin–destination (OD) demand plays a key role in successful transportation studies. In this paper, we consider the estimation of time-varying day-to-day OD flows given data on traffic volumes in a transportation network for a sequence of days. We propose a dynamic linear model (DLM) in order to represent the stochastic evolution of OD flows over time. DLMs are Bayesian state-space models which can capture non-stationarity. We take into account the hierarchical relationships between the distribution of OD flows among routes and the assignment of traffic volumes on links. Route choice probabilities are obtained through a utility model based on past route costs. We propose a Markov chain Monte Carlo algorithm, which integrates Gibbs sampling and a forward filtering backward sampling technique, in order to approximate the joint posterior distribution of mean OD flows and parameters of the route choice model. Our approach can be applied to congested networks and in the case when data are available on only a subset of links. We illustrate the application of our approach through simulated experiments on a test network from the literature.pt_BR
dc.language.isoenpt_BR
dc.publisherUrban Sciencept_BR
dc.rightsAcesso Abertopt_BR
dc.subjectModelos lineares (Estatística)pt_BR
dc.subjectInferência Bayesianapt_BR
dc.subjectTransportespt_BR
dc.subjectBayesian inferencept_BR
dc.subjectOrigin–destination flowspt_BR
dc.subjectDynamic linear modelspt_BR
dc.subjectTransportation networkspt_BR
dc.titleBayesian inference on dynamic linear models of day-to-day origin-destination flows in transportation networkspt_BR
dc.typeArtigo de Periódicopt_BR
Aparece nas coleções:DECC - Artigos publicados em revistas científicas

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2018_art_arpitombeiraneto.pdf539,58 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.