Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/35140
Tipo: | Dissertação |
Título: | Continuidade ótima do gradiente para equações elípticas degeneradas. |
Título em inglês: | Optimum gradient continuity for degenerate elliptic equations. |
Autor(es): | Araújo, Janielly Gonçalves |
Orientador: | Ricarte, Gleydson Chaves |
Palavras-chave: | Regularidade ótima;Degenerescência;Gradiente;Totalmente não-linear;Optimal regularity;Degenerate;Gradient;Full nonlinear |
Data do documento: | 29-Abr-2014 |
Citação: | ARAÚJO, Janielly Gonçalves. Continuidade ótima do gradiente para equações elípticas degeneradas. 2014. 53 f. Dissertação (Mestrado Acadêmico em Matemática) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2014. |
Resumo: | Neste presente trabalho estudaremos importantes propriedades analíticas de soluções de equações diferenciais parciais elípticas totalmente não-lineares do tipo |∇u| γ F(X, D2u) = f(X). Iremos obter a regularidade ótima para este tipo de equação, as quais tem como principal característica a degenerescência do seu gradiente ao longo do conjunto em que tal taxa de variação se anula. Faremos aplicações relacionando os resultados obtidos às teorias de supercondutividade, ∞-laplaciano e p-laplaciano. |
Abstract: | In this work we study important analytic properties of solutions of fully nonlinear elliptic partial differential equations type |∇u| γF(X, D2u) = f(X). We obtain optimal regularity for this type of equation which has as its main characteristic the degeneracy of its gradient along the whole in which this rate of change is canceled. We will make applications relating to the results theories of superconductivity, ∞-Laplacian and p-Laplacian. |
URI: | http://www.repositorio.ufc.br/handle/riufc/35140 |
Aparece nas coleções: | DMAT - Dissertações defendidas na UFC |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2014_dis_jgaraujo.pdf | 367,69 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.