Please use this identifier to cite or link to this item:
http://repositorio.ufc.br/handle/riufc/12537
Type: | Tese |
Title: | Nanotubos de carbono de parede dupla submetidos à condições extremas de altas pressões e altas temperaturas |
Authors: | Aguiar, Acrísio Lins de |
Advisor: | Souza Filho, Antonio Gomes de |
Co-advisor: | San-Miguel, Alfonso |
Keywords: | Espectroscopia de Raman;Pressão;Temperatura;Nanotubo;Semicondutores dopados;Bromo;Diamantes |
Issue Date: | 2012 |
Citation: | AGUIAR, A. L. Nanotubos de carbono de parede dupla submetidos à condições extremas de altas pressões e altas temperaturas. 2012. 197 f. Tese (Doutorado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2012. |
Abstract in Brazilian Portuguese: | Nesta tese apresentamos os resultados referentes aos estudos de nanotubos de carbono de parede dupla submetidos à condições de pressão hidrostática usando ferramentas experimentais e teóricas. A partir de cálculos teóricos de propriedades estruturais e de estrutura eletrônica usando primeiros princípios e potenciais clássicos, estudamos a evolução estrutural dos nanotubos de carbono e suas propriedades vibracionais em função da pressão hidrostática. Estudamos amostras de nanotubos de carbono em feixes bundles puros e modificados quimicamente através da dopagem (intercalação) de moléculas de bromo quando submetidos a condições extremas de altas pressões, utilizando principalmente técnicas de espectroscopia Raman. Medidas de Microscopia Eletrônica de Transmissão (TEM), análise de composição química por XPS e absorção de raios-X foram utilizadas de forma complementar. Apresentamos a perspectiva de entender os efeitos químicos sob o comportamento estrutural dos nanotubos de carbono ao aplicarmos altas pressões. As propriedades vibracionais dos nanotubos foram estudadas até pressões de 30 GPa usando dois diferentes meios de transmissão de pressão: óleo de parafina e NaCl sólido. Estudamos o comportamento do nanotubo interno em relação à estabilidade do nanotubo externo quando submetido a pressão e suas implicações durante o colapso da estrutura. O efeito de incluir uma espécie no interior de um nanotubo também é discutido com respeito ao colapso. O comportamento eletrônico, vibracional e estrutural das moléculas de Bromo intercaladas nos canais intersticiais 1D dos feixes de nanotubos foi estudado e observamos que a formação de poliânions do tipo Brn (n=2,3,5) é preferencial mesmo no regime de altas pressões. Além disso, o comportamento dos poliânions é profundamente modificado quando a estrutura atinge o colapso com o aumento da pressão aplicada. Apresentaremos também resultados de nanotubos de carbono de parede dupla sob condições de altas pressões e altas temperaturas. Estes estudos foram conduzidos com o objetivo de obter novas estruturas de carbono através do colapso da estrutura e/ou criação de ligações sp3 entre os tubos, o qual é potencializado pelo aumento da temperatura em condições extremas de pressão. Diferentes experimentos foram realizados usando a célula Paris-Edinburg que é capaz de submeter um sistema à um ponto específico do diagrama de fase p-T (pressão x Temperatura) ao mesmo tempo. Nossos resultados foram discutidos em termos do conhecimento atual na área e contribui com pontos adicionais no diagrama de fase para nanotubos de carbono. Diversas estruturas como grafite desordenado, diamante, nanotubos estruturalmente modificados e possíveis formações polimerizadas de nanotubos foram discutidas em termos dos resultados obtidos neste trabalho. Esses idéias servem de base para a possibilidade de criação de estruturas híbridas com os nanotubos de paredes duplas. Neste caso, o tubo externo participaria ativamente através do ambiente químico externo a fim de obter ligações do tipo sp3 e o tubo interno poderia servir de suporte para o sistema como um todo. |
Abstract: | In this thesis, we present a study of double wall carbon nanotubes (DWNTs) under extreme high temperature and high pressure conditions using experimental and theoretical techniques. By using theoretical calculations of structural, electronic and vibrational properties based on first principles methods and classic potentials, we have predicted the structural evolution of carbon nanotubes under pressure. High purity bundles of doublewalled carbon nanotubes were studied under high-pressure conditions by using diamond anvil cells. Pristine and Br2 doped samples were submited to pressures up to 30 GPa using paraffin oil and solid NaCl as pressure transmitting medium, and they were analyzed mainly using Raman Spectroscopy technique. We also have used Transmission Electron Microscopy (TEM) images, X-Ray Photoelectron Spectroscopy (XPS) chemical analysis and X-Ray Absorption spectroscopy (XAS) studies to support the overall interpretation of our results. The tangential (G band) and radial (RBM) modes of DWNT bundles were studied here up to a pressure limit not studied before. We have studied the inner tube behavior compared with the outer one concerning the higher stability found for DWNTs than SWNTs, which leads to higher critical pressure for the collapse than expected for individual SWNTs. The effect of including another chemical species inside the external tube (filling effect) is also discussed regarding the nanotube collapse. We have have found that structural stability increases for argon-filled and tube-filled (DWNT) nanotubes (the critical pressure for the collapse increases) while for iodine-doped SWNTs and C70@SWNTs (peapods) the structural stability descreases (critical pressure descreases). It means that inhomogeneous filling effect in the case of iodine and C70 induces strong uniaxial stress components or a strong chemical interaction that decrease the structural stability of SWNTs. Similar effects were observed for Br2-intercalated DWNTs regarding the structure collapse. However, we could follow the electronic, vibrational and structural behavior of Bromine molecules when intercalated on the 1D interstitials channels of DWNT bundles using low-frequency Raman spectra and X-Ray absorption analysis. We have observed that polyanions Brn (n=2,3,5) are lively to be present in these 1D channels even under high pressure and this hypothesis was supported by ab initio calculations. Furthermore, the vibrational properties of the polyanions are dramatically affected when the DWNT bundles collapse suggesting some kind of enhancement of chemical interaction between bromine and collapsed structures. We also present results of high-pressure and high-temperature processing of DWNTs samples. This study was performed in order to synthesize new carbon nanostructured materials using DWNTs as starting point and searching the pressure-temperature conditions to play with DWNT collapse and sp3 bonding formation between outter walls of DWNTs, which could be potentialized with temperature increasing under extreme pressure conditions. Such experiments were realized using the Paris-Edinburg cell which is suitable to process the samples to a specific p-T phasediagram points at the same time up extreme conditions (p=15 GPa,T=1800 K). New polymerized DWNTs-based structures were proposed based on Raman and XPS data and discussed by considering current knowledge using a nanotube p-T phase-diagram cons-tructed with some recent results in this research field. The possibility of synthesize several carbon structures as disordered graphite, diamond, modified nanotubes and polymerized nanotubes were discussed in terms of our results obtained by analysis of post-treated DWNT samples. Those ideas can be used as basis for designing hybrid nanostructures based on carbon nanotubes and improve their mechanical applications. In this case, the DWNTs are better candidates for engineering at nanostructured level than SWNTs through the specific individual inner/outer nanotube role: the external tube is coupled with the chemical environment (maybe with sp3 bond formation) while the screened inner tube give the mechanical support for the whole structure. |
Abstract in French: | Dans cette thèse, nous présentons les résultats de l’étude nanotubes de carbone double parois soumis à l’application de la pression hydrostatique à l’aide d’outils expérimentaux et théoriques. En utilisant des calculs théoriques ab initio et avec des potentiels classique nous avons étudié l’évolution structurelle sous pression de nanotubes de carbone et ses propriétés électroniques et vibrationnels. En parallèle, nous avons étudié des échantillons de nanotubes de carbone en fagot (bundles) pures et chimiquement modifiés par le dopage (intercalation) avec des molécules de brome (Br2) lorsqu’ils sont étés soumis à des conditions extrêmes de pression très élevée en utilisant principalement la spectroscopie Raman. Des mesures de microscopie de transmission électronique (TEM), l’analyse de composition chimique par spectroscopie de photon-électron par rayons-X (XPS) et l’absorption des rayons X (XAS) ont également été utilisées pour donner une interprétation complémentaire. Ces résultats donnent une meilleure compréhension des effets chimiques sur le comportement de la structure des nanotubes de carbone sous contraintes de pression élevées. Les propriétés vibrationnels de l’échantillon ont été observées jusqu’à des pressions de 30 GPa en utilisant deux milieux de transmission de la pression: l’huile de paraffine et du NaCl solide. En utilisant le spectre Raman des modes tangentiels (G band) et des modes de respirations radial (RBM), nous étudions le comportement du nanotube interne par rapport à la stabilité du nanotube externe lorsqu’il est soumis à la pression et ses implications pour le renforcement de la structure. L’effet de l’inclusion d’une espèce à l’intérieur d’un nanotube est également discuté par rapport à la stabilité du tube. Les propriétés électroniques, vibrationnels et structurales des molécules de brome intercalés dans les canaux interstitiels des fagot de nanotubes 1D a été étudié et on a observé que la formation de chaines de poly anions Brn (n = 2,3,5) est préférée même sous haute pression. Le comportement des polyanions est encore profondément modifié lorsque la structure atteint la pression critique de collapse. Nous présentons ensuite les résultats de l’étude nanotubes de carbone double-parois soumis à des conditions de pressions et températures très élevés. Ces travaux ont été conduits avec l’objectif d’obtenir de nouvelles structures à base de de carbone grâce à le renforcement de la structure par le tube interne et en créant des liaisons sp3 entre les tubes, ce que peut être stimulé par l’augmentation de température dans des conditions extrêmes de pression. Différentes expériences ont été réalisées à l’aide de la cellule Paris-Edimbourg qui peut conduire le système `a un point spécifique du diagramme de phase pT (pression x température). Nos résultats ont été discutés par rapport les connaissances actuelles avec une compilation des études récents pour les nanotubes de carbone soumis à des conditions extrêmes. Plusieurs structures ont été proposées avec les nanotubes double-parois avec la possible formation aussi du graphite désordonné, diamant, nanotubes structurellement modifiés ou des nanotubes polymérises. Ces différentes structures ont été discutées en termes des résultats obtenus dans ce travail après la caractérisation des échantillons traités dans la presse Paris-Edinburg. Ces idées sont le fondement de la possibilité de créer des nouvelles structures hybrides à base des nanotubes de carbone à double-parois. Dans ce cas, le tube externe participe activement pour le system à l’environnement chimique externe peut être à travers des liaisons sp3 et le tube interne pourrait servir de support mécanique pour tout le système. |
URI: | http://www.repositorio.ufc.br/handle/riufc/12537 |
Appears in Collections: | DFI - Teses defendidas na UFC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2012_tese_alaguiar.pdf | 15,2 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.