Please use this identifier to cite or link to this item: http://repositorio.ufc.br/handle/riufc/11718
Type: Dissertação
Title: Propriedades difusivas de sistemas clássicos confinados
Authors: Camarão, Diego de Lucena
Advisor: Ferreira, Wandemberg Paiva
Co-advisor: Nelissen, Kwinten
Keywords: Processos difusivos;Simulações de dinâmica molecular;Sistemas clássicos;Diffusive processes;Molecular dynamics simulations;Classical systems
Issue Date: 2011
Citation: CAMARÃO, D. L. Propriedades difusivas de sistemas clássicos confinados. 2011. 79 f. Dissertação (Mestrado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2011.
Abstract in Brazilian Portuguese: Nesta dissertação, fizemos um estudo das propriedades difusivas de um sistema de partículas clássicas carregadas em canais quasi-unidimensionais. Mais especificamente, no Capítulo 2, apresentamos uma revisão do problema da difusão e do movimento browniano. Mostramos que as abordagens de Einstein e de Langevin para o movimento browniano são equivalentes no limite de tempos longos. Isto foi feito através do cálculo analítico do deslocamento quadrático médio (MSD) de um sistema unidimensional de N partículas não--interagentes através da solução da equação de difusão. No Capítulo 3, introduzimos o método de Dinâmica Molecular (DM), amplamente utilizado em simulações computacionais de sistemas de N partículas clássicas. Apresentamos dois métodos de integração numérica das equações de movimento: o algoritmo de Verlet e o algoritmo leapfrog. Abordamos brevemente o método de Dinâmica Molecular de Langevin (DML), que inclui um termo de flutuações térmicas (força estocástica), devido às colisões das moléculas do fluido com as partículas do sistema. Finalmente, apresentamos uma aproximação do método de DML chamada Dinâmica Browniana (DB). No Capítulo 4, estudamos as propriedades difusivas, através da análise do deslocamento quadrático médio, de um sistema de partículas clássicas carregadas sujeitas à ação de um potencial de confinamento unidimensional, analisando a transição do regime de difusão em linha (SFD) para o regime de difusão bidimensional (2D). Vimos como ocorre essa transição em função dos parâmetros que regulam o potencial de confinamento. Discutimos a validade dos resultados numéricos obtidos em relação a resultados analíticos teóricos encontrados na literatura. Finalmente, no Capítulo 5, apresentamos um resumo dos resultados obtidos, bem como discutimos perspectivas e sugestões para futuros trabalhos.
Abstract: In this thesis, we studied diffusive properties of a classical system of charged particles in narrow quasi-one-dimensional (Q1D) channels. In Chapter 2, we present a revision of diffusion equation and Brownian motion. We showed that Einstein’s and Langevin’s approaches to the Brownian motion problem are equivalent in the limit of very long time scales. We calculated analitically the mean-square displacement (MSD) of a purely 1D system of N non–interacting particles by solving the diffusion equation. In Chapter 3, we introduced the method of Molecular Dynamics (MD) simulations, which has been widely used in computational simulations for N-particles interacting systems. We present two numerical integration schemes for the integration of the equations of motion: the Verlet and the leapfrog algorithms. We briefly show the method of Langevin Molecular Dynamics (LMD) simulations, which includes a term of stochastic fluctuations (stochastic forces) due to the collisions of the molecules of the medium with the Brownian particles. We also present the Brownian Dynamics (BD) approximation. In Chapter 4, we studied diffusive properties of a monodisperse system of interacting particles confined to a Q1D channel using MD simulations. We calculate numerically the MSD and investigate the influence of the width of the channel (or the strength of the confinement potential) on diffusion in finite-size channels of different shape (i.e., straight and circular). The transition from single-file diffusion (SFD) to the two-dimensional diffusion regime is investigated. We discussed the validity of our numerical results compared to analytical results found in literature. Finally, in Chapter 5, we presented a compilation of the obtained results, and we discussed perspectives and suggestions for future works
URI: http://www.repositorio.ufc.br/handle/riufc/11718
Appears in Collections:DFI - Dissertações defendidas na UFC

Files in This Item:
File Description SizeFormat 
2011_dis_dlcamarao.pdf2,38 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.