Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/72120
Tipo: | Artigo de Periódico |
Título : | Deep neural network modeling for CFD simulations: benchmarking the fourier neural operator on the lid-driven cavity case |
Autor : | Rocha, Paulo Alexandre Costa Johnston, Samuel Joseph Santos, Victor Oliveira Aliabadi, Amir Abbas Thé, Jesse Van Griensven Gharabaghi, Bahram |
Palabras clave : | Physics-informed neural operator;Partial differential equations;Turbulence;Operador neural informado pela física;Equações diferenciais parciais;Turbulência |
Fecha de publicación : | 2023 |
Editorial : | Applied Sciences |
Citación : | ROCHA, Paulo Alexandre Costa; JOHNSTON, Samuel Joseph; SANTOS, Victor Oliveira; ALLABADI, Amir Abbas; THÉ, Jesse Van Griensven; GHARABAGHI, Bahram. Deep neural network modeling for CFD simulations: benchmarking the fourier neural operator on the lid-driven cavity case. Applied Sciences, [s.l.], v. 13, n. 5, p. 3165, 2023. |
Abstract: | In this work we present the development, testing and comparison of three different physics-informed deep learning paradigms, namely the ConvLSTM, CNN-LSTM and a novel Fourier Neural Operator (FNO), for solving the partial differential equations of the RANS turbulence model. The 2D lid-driven cavity flow was chosen as our system of interest, and a dataset was generated using OpenFOAM. For this task, the models underwent hyperparameter optimization, prior to testing the effects of embedding physical information on performance. We used the mass conservation of the model solution, embedded as a term in our loss penalty, as our physical information. This approach has been shown to give physical coherence to the model results. Based on the performance, the ConvLSTM and FNO models were assessed in forecasting the flow for various combinations of input and output timestep sizes. The FNO model trained to forecast one timestep from one input timestep performed the best, with an RMSE for the overall x and y velocity components of 0.0060743 m·s−1. |
URI : | http://www.repositorio.ufc.br/handle/riufc/72120 |
ISSN : | 2076-3417 |
Aparece en las colecciones: | DEME - Artigos publicados em revista científica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2023_art_pacrocha1.pdf | 3,81 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.