Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/72120
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorRocha, Paulo Alexandre Costa-
dc.contributor.authorJohnston, Samuel Joseph-
dc.contributor.authorSantos, Victor Oliveira-
dc.contributor.authorAliabadi, Amir Abbas-
dc.contributor.authorThé, Jesse Van Griensven-
dc.contributor.authorGharabaghi, Bahram-
dc.date.accessioned2023-05-08T16:55:16Z-
dc.date.available2023-05-08T16:55:16Z-
dc.date.issued2023-
dc.identifier.citationROCHA, Paulo Alexandre Costa; JOHNSTON, Samuel Joseph; SANTOS, Victor Oliveira; ALLABADI, Amir Abbas; THÉ, Jesse Van Griensven; GHARABAGHI, Bahram. Deep neural network modeling for CFD simulations: benchmarking the fourier neural operator on the lid-driven cavity case. Applied Sciences, [s.l.], v. 13, n. 5, p. 3165, 2023.pt_BR
dc.identifier.issn2076-3417-
dc.identifier.otherDOI: https://doi.org/10.3390/app13053165-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/72120-
dc.description.abstractIn this work we present the development, testing and comparison of three different physics-informed deep learning paradigms, namely the ConvLSTM, CNN-LSTM and a novel Fourier Neural Operator (FNO), for solving the partial differential equations of the RANS turbulence model. The 2D lid-driven cavity flow was chosen as our system of interest, and a dataset was generated using OpenFOAM. For this task, the models underwent hyperparameter optimization, prior to testing the effects of embedding physical information on performance. We used the mass conservation of the model solution, embedded as a term in our loss penalty, as our physical information. This approach has been shown to give physical coherence to the model results. Based on the performance, the ConvLSTM and FNO models were assessed in forecasting the flow for various combinations of input and output timestep sizes. The FNO model trained to forecast one timestep from one input timestep performed the best, with an RMSE for the overall x and y velocity components of 0.0060743 m·s−1.pt_BR
dc.language.isoenpt_BR
dc.publisherApplied Sciencespt_BR
dc.subjectPhysics-informed neural operatorpt_BR
dc.subjectPartial differential equationspt_BR
dc.subjectTurbulencept_BR
dc.subjectOperador neural informado pela físicapt_BR
dc.subjectEquações diferenciais parciaispt_BR
dc.subjectTurbulênciapt_BR
dc.titleDeep neural network modeling for CFD simulations: benchmarking the fourier neural operator on the lid-driven cavity casept_BR
dc.typeArtigo de Periódicopt_BR
Aparece nas coleções:DEME - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2023_art_pacrocha1.pdf3,81 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.