Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/72120
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Rocha, Paulo Alexandre Costa | - |
dc.contributor.author | Johnston, Samuel Joseph | - |
dc.contributor.author | Santos, Victor Oliveira | - |
dc.contributor.author | Aliabadi, Amir Abbas | - |
dc.contributor.author | Thé, Jesse Van Griensven | - |
dc.contributor.author | Gharabaghi, Bahram | - |
dc.date.accessioned | 2023-05-08T16:55:16Z | - |
dc.date.available | 2023-05-08T16:55:16Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | ROCHA, Paulo Alexandre Costa; JOHNSTON, Samuel Joseph; SANTOS, Victor Oliveira; ALLABADI, Amir Abbas; THÉ, Jesse Van Griensven; GHARABAGHI, Bahram. Deep neural network modeling for CFD simulations: benchmarking the fourier neural operator on the lid-driven cavity case. Applied Sciences, [s.l.], v. 13, n. 5, p. 3165, 2023. | pt_BR |
dc.identifier.issn | 2076-3417 | - |
dc.identifier.other | DOI: https://doi.org/10.3390/app13053165 | - |
dc.identifier.uri | http://www.repositorio.ufc.br/handle/riufc/72120 | - |
dc.description.abstract | In this work we present the development, testing and comparison of three different physics-informed deep learning paradigms, namely the ConvLSTM, CNN-LSTM and a novel Fourier Neural Operator (FNO), for solving the partial differential equations of the RANS turbulence model. The 2D lid-driven cavity flow was chosen as our system of interest, and a dataset was generated using OpenFOAM. For this task, the models underwent hyperparameter optimization, prior to testing the effects of embedding physical information on performance. We used the mass conservation of the model solution, embedded as a term in our loss penalty, as our physical information. This approach has been shown to give physical coherence to the model results. Based on the performance, the ConvLSTM and FNO models were assessed in forecasting the flow for various combinations of input and output timestep sizes. The FNO model trained to forecast one timestep from one input timestep performed the best, with an RMSE for the overall x and y velocity components of 0.0060743 m·s−1. | pt_BR |
dc.language.iso | en | pt_BR |
dc.publisher | Applied Sciences | pt_BR |
dc.subject | Physics-informed neural operator | pt_BR |
dc.subject | Partial differential equations | pt_BR |
dc.subject | Turbulence | pt_BR |
dc.subject | Operador neural informado pela física | pt_BR |
dc.subject | Equações diferenciais parciais | pt_BR |
dc.subject | Turbulência | pt_BR |
dc.title | Deep neural network modeling for CFD simulations: benchmarking the fourier neural operator on the lid-driven cavity case | pt_BR |
dc.type | Artigo de Periódico | pt_BR |
Aparece nas coleções: | DEME - Artigos publicados em revista científica |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2023_art_pacrocha1.pdf | 3,81 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.