Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/71987
Tipo: Artigo de Periódico
Título: A Hybrid genetic algorithm for the vehicle and crew scheduling in mass transit systems
Autor(es): Prata, Bruno de Athayde
Palavras-chave: Evolutionary algorithms;GRASP;Maximal covering problem with multiple resources
Data do documento: 2015
Instituição/Editor/Publicador: IEEE Latin America Transactions
Citação: PRATA, Bruno de Athayde. A Hybrid genetic algorithm for the vehicle and crew scheduling in mass transit systems. IEEE Latin America Transactions, v. 13, n. 9, p. 3020-3025, 2015.
Abstract: The integrated vehicle and crew scheduling problem is a difficult and widely studied Combinatorial Optimization problem. Several studies have shown that exact approaches for this problem are not useful in practical situations due to the high computational costs involved. This paper describes a hybrid genetic algorithm for vehicle and crew scheduling, which is modeled as a maximal covering problem with multiples resources. In addition, an innovative mathematical formulation is presented. Computational results with real vehicle and crew scheduling problem instances are presented and discussed. These results indicate that the proposed approach has a considerable potential for achieving significant gains in terms of operation costs and planning times.
URI: http://www.repositorio.ufc.br/handle/riufc/71987
ISSN: 1548-0992
Tipo de Acesso: Acesso Aberto
Aparece nas coleções:DEHA - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2015_art_baprata2.pdf482,18 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.