Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/71987
Tipo: Artigo de Periódico
Título : A Hybrid genetic algorithm for the vehicle and crew scheduling in mass transit systems
Autor : Prata, Bruno de Athayde
Palabras clave : Evolutionary algorithms;GRASP;Maximal covering problem with multiple resources
Fecha de publicación : 2015
Editorial : IEEE Latin America Transactions
Citación : PRATA, Bruno de Athayde. A Hybrid genetic algorithm for the vehicle and crew scheduling in mass transit systems. IEEE Latin America Transactions, v. 13, n. 9, p. 3020-3025, 2015.
Abstract: The integrated vehicle and crew scheduling problem is a difficult and widely studied Combinatorial Optimization problem. Several studies have shown that exact approaches for this problem are not useful in practical situations due to the high computational costs involved. This paper describes a hybrid genetic algorithm for vehicle and crew scheduling, which is modeled as a maximal covering problem with multiples resources. In addition, an innovative mathematical formulation is presented. Computational results with real vehicle and crew scheduling problem instances are presented and discussed. These results indicate that the proposed approach has a considerable potential for achieving significant gains in terms of operation costs and planning times.
URI : http://www.repositorio.ufc.br/handle/riufc/71987
ISSN : 1548-0992
Derechos de acceso: Acesso Aberto
Aparece en las colecciones: DEHA - Artigos publicados em revista científica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2015_art_baprata2.pdf482,18 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.