Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/70705
Tipo: | Artigo de Evento |
Título : | Novelty detection in time series through self-organizing networks: an empirical evaluation of two different paradigms |
Autor : | Aguayo, Leonardo Barreto, Guilherme de Alencar |
Fecha de publicación : | 2008 |
Editorial : | Brazilian Symposium on Neural Networks |
Citación : | AGUAYO, L.; BARRETO, G. A. Novelty detection in time series through self-organizing networks: an empirical evaluation of two different paradigms. In: BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, 10., 2008, Salvador. Anais... Salvador: IEEE, 2008. p. 129-134. |
Abstract: | This paper addresses the issue of novelty or anomaly detection in time series data. The problem may be interpreted as a spatio-temporal classification procedure where current time series observation is labeled as normal or novel/abnormal according to a decision rule. In this work, the construction of the decision rules is formulated by means of two different self-organizing neural network (SONN) paradigms: one builds decision thresholds from quantization errors and the other one from prediction errors. Simulations with synthetic and real-world data show the feasibility of the two approaches. |
URI : | http://www.repositorio.ufc.br/handle/riufc/70705 |
Aparece en las colecciones: | DETE - Trabalhos apresentados em eventos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2008_eve_gabarreto.pdf | 287,95 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.