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Abstract

This paper addresses the issue of novelty or anomaly
detection in time series data. The problem may be inter-
preted as a spatio-temporal classification procedure where
current time series observation is labeled as normal or
novel/abnormal according to a decision rule. In this
work, the construction of the decision rules is formulated
by means of two different self-organizing neural network
(SONN) paradigms: one builds decision thresholds from
quantization errors and the other one from prediction er-
rors. Simulations with synthetic and real-world data show
the feasibility of the two approaches.

1. Introduction

Novelty - or anomaly - detection is concerned with the
difficult problem of finding samples which appear to be in-
consistent with a previously modeled subset of data. Typical
application areas requiring novelty detection procedures are
equipment fault detection and diagnosis, fraud detection,
database cleaning, computer network security, among oth-
ers. In general, such novelty detection strategies are devised
by means of static pattern recognition techniques, where the
time dimension plays no role at all in the decision rule.

However, several real-world applications provide data in
a time-ordered fashion, usually in the form of successive
measurements on the magnitude of one or several variables
of interest, giving rise to time series data. In financial mar-
ket, stock time series may present patterns that can guide
an investor in his/her investment decisions in short- or long-

term horizons; biomedical measurements such as ECG or
EEG are a valuable source of information for reliable di-
agnosis; measurements from chemical or mechanical pro-
cesses are used to control complex manufacturing systems.
Indeed, classic authors [4] elect the “analysis of effects of
unusual intervention events to a system” as one a relevant
practical problem to be addressed by time-series analysis.

Novelty detection in time series data is particularly chal-
lenging due to the usual presence of specific features, such
as trend and seasonality, that mask the character of novelty
that may be present in data. Non-stationary processes, such
as regime-switching time series, also impose additional lim-
itations on time series modeling. Furthermore, some types
of time series may have have relatively few samples, re-
stricting the amount of data available to extract information
about its underlying behavior. Finally, time-critical applica-
tions, such as fault detection and surveillance, require on-
line detection of anomalies/novelties.

Traditional approaches to detect novelty, such as statis-
tical parametric modeling and hypothesis testing [12] can
be successfully used to model static patterns, as these tech-
niques assume some degree of stationarity of the data. Lin-
ear stationary processes can be handled by standard Box-
Jenkins ARMA time series models but nonlinear or non-
stationary dynamic patterns - such as chaotic or regime-
switching time series - require a more powerful approach
in terms of learning and computational capabilities.

At this point the use of artificial neural networks (ANNs)
have shown to be useful due to their capability to act as gen-
eral purpose nonlinear system identifier, generalizing the
acquired knowledge to unknown data. Most of the ANN-
based methods rely on supervised ANN models, such as
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Multi-Layer Perceptron (MLP) and Radial Basis Functions
(RBF) architectures [13, 5].

A major limitation of such models is their inability to
handle training data with unbalanced class sample sizes.
Usually, normal data samples abounds, while anomalous
data samples may not be always available or may be costly
to collect. A plausible solution relies on building a model
for the normal data samples only. Any incoming data sam-
ple that deviates from this model is considered anoma-
lous (or novel). This approach is usually implemented by
means of vector quantization algorithms (e.g. K-means)
so that classification of an incoming data sample as nor-
mal/abnormal is based on the magnitude of the quantization
error produced by that sample.

In recent years, it has been observed an increasing num-
ber of applications of neural network based vector quanti-
zation algorithms - in particular the Self-Organizing Map
(SOM) [8] - to novelty detection tasks [15, 3, 10, 16], most
of them dealing with static (spatial) data only. However,
since the early 1990’s, the SOM algorithm itself and tem-
poral variants of it have been proposed with the aim of per-
forming clustering (or vector quantization) on time series
data (see [2] for a review).

When dealing with time series data, SOM-based ap-
proaches usually converts the time series into a non-
temporal representation (e.g. spectral features computed
through Fourier transform) and use it as input to the
SOM [17]. It is also possible to use tapped delay lines at
the input of the SOM, again converting the time series into
a spatial representation [6].

In this paper, however, we are also interested in eval-
uate the performance of a different self-organizing neural
network approach, which does not use the SOM algorithm
as a vector quantization algorithm, but rather it provides a
multiple (local) model formulation, where a bank of sev-
eral models are simultaneously fitted to the input time series
in other to find the best estimation (prediction) of the cur-
rent time series observation. If the best predictor provides
a too high prediction error, then a novelty may be occur-
ring. For this purpose, the multiple model strategy is im-
plemented through the Operator Map (OPM) network [9],
a generalization of the SOM network in which the usual
static prototype-based neurons are replaced with dynamic
time series models, such as the linear autoregressive model
or the Kalman filter.

The remainder of the document is divided as follows. In
Section 2 we briefly describe the self-organizing algorithms
used in this work to perform novelty detection in time se-
ries. Section 3 presents in detail the methodology based on
the analysis of both quantization and prediction errors; Sec-
tion 5 contains the numerical results and comments on the
performance of all the simulated algorithms. Finally, Sec-
tion 4 resumes the key points, conclusions and future work.

2 Vector Quantization of Time Series Data
with Self-Organizing Networks

There are many approaches to time series clustering or
vector quantization [11], but we limit the scope of our de-
scription to prototype-based algorithms. In what concerns
the task, we assume that the algorithms are trained on-line
as the data is collected. The input vectors are built through a
fixed-length window, sliding over the time series of interest.
Thus, at time step n, the input vector is given by

x+
n = [xn xn−1 · · · xn−p+1]

T , (1)

where p ≥ 1 is the memory-depth parameter. The super-
script T denotes the transpose of a vector. Weight updat-
ing is allowed only during a fixed number of steps, Tmax.
Once the network is trained, decision thresholds are com-
puted based on either the quantization or prediction errors
- the former approach is used when the SOM algorithm is
applied, and the latter when the OPM network is used.

2.1 The SOM algorithm

SOM training is carried out using the vector x+
n as input.

Thus, the winning neuron, i∗n, is given by

i∗n = arg min
∀i
‖x+

n −wi
n‖, i = 1, . . . , Q, (2)

where wi
n are the weights of the neuron i, Q is the number

of neurons (see Figure 1) and n denotes the current itera-
tion of the algorithm. Accordingly, the weight vectors are
updated by the following learning rule:

wi
n+1 = wi

n + ηnHn(i∗, i)
(
x+

n −wi
n

)
, (3)

where Hn(i∗, i) is a gaussian function which control the
degree of change imposed to the weight vectors of those
neurons in the neighborhood of the winning neuron:

Hn(i∗, i) = exp

(
−
‖ri

n − ri∗

n ‖
2

σ2
n

)
, (4)

where σn defines the radius of the neighborhood function
at iteration n, and ri

n and ri∗

n are the respective coordinates
of neurons i and i∗ at the output array. The learning rate,
0 < ηn < 1, should decay in time to guarantee convergence
of the weight vectors to stable states. In this paper, we use
ηn = η0 (ηT /η0)

t/Tmax , where η0 is the initial value of η,
and ηT is its final value after Tmax training iterations. The
variable σn should decay in time in a similar fashion.

2.2 The Operator Map Model

Neurons in the OPM network are regarded as mathe-
matical operators, denoted generically by G(·), represent-
ing a non-specific filtering operation over temporal pat-
terns. Such operators usually contain adjustable parameters,
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Figure 1. Sketch of a 2D-SOM: winner neuron
i∗ highlighted.

which can be tuned in an adaptive, self-organized fashion.
In this architecture, a given operator may become sensitive
to a certain dynamical range of the input time series. More
specifically, let us assume that at discrete time step n a given
time series can be described by the following global model

xn = H
(
x−n

)
+ ε(t) (5)

where x−n = [xn−1 xn−2 · · · xt−p]
T is a vector comprised

of p last samples of a time series, H(·) is an unknown map-
ping, and ε(t) is a random sample from a gaussian white
noise process with zero mean and variance σ2

ε .
Let us also assume that the global model H(·) can be

approximated with arbitrary accuracy by a set of Q local
linear models Gi, i = 1, . . . , Q associated with the neurons
in the OPM model. Since our target application is anomaly
detection in time series, we are interested in providing a
good estimate of the current state xn of the system being
monitored, given x−n and the local models Gi(·).

Let x̂i
n be the estimate of the current state of the system

computed by neuron i. Then,

ep,i
n = xn − x̂i

n, (6)

is the prediction error due to neuron i. If the system is
working normally, then one should expect a small value for
the prediction error. Otherwise, something anomalous may
be occurring. A common choice for the local filter Gi is the
linear autoregressive (AR) model. In this case, the estimate
due to neuron i of the current value of the time series is
given by:

x̂i
n = [wi

n]T x−n =

p∑
j=1

wij
n x−n−j (7)

where wi
n = [w1i

n w2i
n · · · wpi

n ]T is the coefficient (weight)
vector associated to neuron i. The winning neuron i∗n is the
one providing the best estimation of xn. In other words, the
winning filter at time n is the one with the smallest absolute
value for the prediction error:

i∗n = arg min
∀i
{|xn − x̂i

n|} = argmin
∀i
{|ep,i

n |} (8)

G1(x−n )

G2(x−n )

GK(x−n )

i∗n = arg min∀i{|e
p,i
n |}

x−n

xn

x̂1
n

x̂2
n

x̂Q
n

ADJUSTMENT

Figure 2. Sketch of the OPM network.

where |u| denotes the absolute value of the scalar u. The
quantity ep,i∗

n = xn − x̂i∗

n is the prediction error produced
by the current winning neuron. The learning rule for the
weight vector of neuron i is a LMS-like equation, slightly
modified by the inclusion of a neighborhood function:

wi
n+1 = wi

n + ηnHn(i∗, i) ep,i
n x−n (9)

= wi
n + ηnHn(i∗, i)

(
xn − x̂i

n

)
x−n , (10)

where Hn(i∗, i) is the neighborhood function as defined in
Eq. (4). A successfully trained OPM network should fit Q
local autoregressive models to a given nonstationary time
series. Note that an OPM with one single neuron (i.e. Q =
1) is equivalent to a linear AR model.

3 Novelty Detection Methodologies

This section describes two variations of the same basic
procedure: in simple words, take the quantization or predic-
tion errors obtained at the training phase of the ANN algo-
rithm and use them to compute decision thresholds, which
are used to classify test samples as NORMAL or NOVEL.
Figure 3 presents a box diagram with the steps followed in
this study.

3.1 Quantization Error Based Approach

It has become common practice [15, 3, 1] to use the
quantization error of the winner neuron

eq,i∗

n = ‖x+
n −wi∗

n ‖, (11)

as a measure of the degree of proximity of x+
n to a statisti-

cal representation of normal behavior encoded in the weight
vectors of the SOM.
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Figure 3. Block diagram of the chosen
methodology for novelty detection.

Once the standard SOM has been trained, we present the
training data vectors once again to this network. From the
resulting set of quantization errors {eq,i∗

n }N
n=1, computed

for all training vectors, we compute decision thresholds for
the anomaly detection tests. For a successfully trained net-
work, the sample distribution of these quantization errors
should reflect the “known” or “normal” behavior of the in-
put variable whose time series model is being constructed.

Several procedures to compute decision thresholds have
been developed in recent years, most of them based on
well-established statistical techniques [7], but we apply the
method recently proposed in [3]. For a given significance
level α, we are interested in an interval within which we
can certainly find a percentage 100(1− α) (e.g. α = 0.05)
of normal values of the quantization error. Hence, we com-
pute the lower and upper limits of this interval as follows:

• Lower Limit (τ−): This is the 100α
2

th percentile1 of
the distribution of quantization errors associated with
the training data vectors.

• Upper Limit (τ+): This is the 100(1 − α
2
)th per-

centile of the distribution of quantization errors asso-
ciated with the training data vectors.

Once the decision interval [τ−, τ+] has been computed,
any anomalous behavior of incoming data samples can be
detected by means of the following simple rule:

IF eq,i∗

n ∈ [τ−, τ+]

THEN x+
n is NORMAL (12)

ELSE x+
n is ABNORMAL (or NOVEL).

1The percentile of a distribution of values is a number Nα such that a
percentage 100(1 − α) of the sample values are less than or equal to Nα.

3.2 Prediction Error Based Approach

In order to use the OPM for anomaly detection purposes
we also defined a decision interval [τ−, τ+], but now for
the distribution of prediction errors produced by the train-
ing data. Computation of the lower/upper limits of this in-
terval follows the same logic of the technique presented in
previous section, except for the fact that now we use the
distribution of the prediction errors of the winning neurons:

• Lower Limit (τ−): This is the 100α
2

th percentile of
the distribution of prediction errors {ep,i∗

n }.

• Upper Limit (τ+): This is the 100(1− α
2
)th percentile

of the distribution of prediction errors {ep,i∗

n }.

The decision rule for incoming data samples is then writ-
ten as follows:

IF ep,i∗

n ∈ [τ−, τ+],

THEN x+
n is NORMAL (13)

ELSE x+
n is ABNORMAL (or NOVEL).

4 Computer Simulations

The feasibility the proposed method is evaluated using
input signals derived from four different dynamic systems,
three of them are realizations of chaotic series. The first one
is composed by the x component of Lorenz equations

ẋ = σL(y− x), ẏ = x(αL− z)− y, ż = xy− εLz, (14)

which exhibits chaotic dynamics for σL = 10, αL = 28
and εL = 8/3. The second and third signals come from two
different Mackey-Glass series, with distinct τ delays:

ẋ = Rx(t) +
Px(t− τ)

(1 + x(t− τ)10)
, (15)

with P = 0.2, R = −0.1 and τ = 17 or τ = 35. The fourth
signal is an autoregressive process AR(2):

xn = 1.9xn−1 − 0.99xn−2 + Nn, (16)

with Nn is a random sample from a gaussian white noise
process with zero mean and variance σ2

n = 10−3. Typical
realizations of each signal are shown at the top of Figure 4.

The novelty detection experiment was designed to per-
form the on-line detection of an anomalous signal, after
training the networks with a sequence considered NOR-
MAL. The role of NORMAL signal was assigned to the
Lorenz series, which is then used to train the SOM and
OPM networks and to compute the decision thresholds. The
three remaining signals (two Mackey-Glass series and the
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Figure 4. Realizations of the time series used
in the simulations and prediction error ep,i∗

n .

AR signal) are used for testing purposes. Each individual
signal is comprised of 1000 samples. The SOM and OPM
networks had a one-dimensional topology and were trained
with the following parameters: Q = 30, Tmax = 1000,
η0 = 0.5, ηT = 0.001, σ0 = Q/2, σT = 0.001 and p = 10.

In Figure 4 (bottom) one can see the prediction errors
{ep,i∗

n } collected from the winning neuron i∗ for the OPM
network. It is possible to notice that (i) the low prediction
errors produced when the for the first k = 1000 samples,
revealing the good capability of the OPM to produce a cor-
rect model of normal behavior, and (ii) that when signals
of different dynamics are presented, the resulting prediction
errors are much higher.

It is also illustrative to observe the cumulative distribu-
tion function (CDF) of the prediction errors for the OPM
network. Figure 5 depicts the CDFs for ei∗

n obtained from
all the different testing sequences, where it is possible to
verify that ABNORMAL behavior results in distributions
with higher variance.

Concerning the performance of the standard SOM for
novelty detection in time series, two experiments were
performed. First, an experiment to detect noisy samples
was performed adding to the AR(2) series a sequence of
“spikes” repeated at each 100 samples, simulating a distur-
bance on the measurement. Figure 6 shows the noisy AR(2)
series and the corresponding quantization error generated

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e
i
(t)

F(
e i(t)

)

CDF of Prediction errors − OPM. Black Curve: Normal Data

Lorenz

Mackey−Glass, τ = 35

Mackey−Glass, τ = 17

AR(2)

Figure 5. CDFs for the prediction errors.

by the standard SOM network. The time instants where the
spikes were added shows clearly higher quantization error.
The thresholds [τ−, τ+] can be adjusted to minimize typi-
cal performance metrics of binary classifiers, such as false
positive and false negative rates (or any weighted combina-
tion of them).

The second experiment involves a real-world signal rep-
resenting the current on a solenoid of a valve aimed to con-
trol the injection of combustion in the space shuttle (Fig-
ure 7). It is possible to notice the irregular behavior of
the valve at the two rightmost cycles. The corresponding
quantization error signal is shown at Figure 8, including the
thresholds [τ−, τ+] corresponding to the 5% and 95% per-
centiles of eq,i∗

n . Again, the method performed satisfacto-
rily, with clear detection of abnormal states.

5 Conclusion

This work described two self-organizing paradigms
for detecting abnormal samples in time series by non-
parametric analysis of either the quantization or prediction
errors available after training selected ANNs. The method-
ology based on the prediction errors of the OPM network
is novel. The methods were evaluated in novelty detection
tasks for univariate time series, but its extension to multi-
variate time series is straightforward. Decision thresholds
used to classify data as normal or abnormal may be fur-
ther optimized to minimize typical performance metrics of
binary classifiers, such as false positive and false negative
rates (or any weighted combination of them). Future work
on the subject includes the combination of the method with
special pre-processing of time series: before feed then into
the ANNs, the idea is to use using different memory kernels
for the SOM networks, such as the Gamma memory [14].
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