Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/70701
Tipo: Artigo de Evento
Título : Efficient selection of data samples for fault classification by the clustering of the SOM
Autor : Sousa, Diego Perdigão
Barreto, Guilherme de Alencar
Medeiros, Cláudio Marques de Sá
Fecha de publicación : 2017
Editorial : Congresso Brasileiro de Inteligência Computacional
Citación : SOUSA, D. P.; BARRETO, G. A.; MEDEIROS, C. M. S. Efficient selection of data samples for fault classification by the clustering of the SOM. In: CONGRESSO BRASILEIRO DE INTELIGÊNCIA COMPUTACIONAL, 13., 2017, Niterói. Anais... Niterói: SBIC, 2017. p. 1-12.
Abstract: In this paper we propose a sample selection procedure for improving accuracy of supervised classifiers in fault classification tasks. To generate faulty samples, a laboratory testbed is constructed and to avoid loss of a 3-phase AC induction motor (due to high short-circuit currents) resistors are used to limit current levels. This gives rise to short-circuit faults of different impedance levels, which may generate data samples difficult to classify as normal or faulty ones, specially if the faults are of high impedance (easily misinterpreted as non-faulty samples). Aiming at reducing misclassification, we use the clustering of the SOM approach [1] with modified information criteria for cluster validation. By means of comprehensive computer simulations, we show that the proposed approach is able to cluster successfully the different types of short-circuit faults and can be used for the purpose of sample selection.
URI : http://www.repositorio.ufc.br/handle/riufc/70701
Aparece en las colecciones: DETE - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2017_eve_gabarreto.pdf414,94 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.