Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/70701
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSousa, Diego Perdigão-
dc.contributor.authorBarreto, Guilherme de Alencar-
dc.contributor.authorMedeiros, Cláudio Marques de Sá-
dc.date.accessioned2023-02-09T16:29:08Z-
dc.date.available2023-02-09T16:29:08Z-
dc.date.issued2017-
dc.identifier.citationSOUSA, D. P.; BARRETO, G. A.; MEDEIROS, C. M. S. Efficient selection of data samples for fault classification by the clustering of the SOM. In: CONGRESSO BRASILEIRO DE INTELIGÊNCIA COMPUTACIONAL, 13., 2017, Niterói. Anais... Niterói: SBIC, 2017. p. 1-12.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/70701-
dc.description.abstractIn this paper we propose a sample selection procedure for improving accuracy of supervised classifiers in fault classification tasks. To generate faulty samples, a laboratory testbed is constructed and to avoid loss of a 3-phase AC induction motor (due to high short-circuit currents) resistors are used to limit current levels. This gives rise to short-circuit faults of different impedance levels, which may generate data samples difficult to classify as normal or faulty ones, specially if the faults are of high impedance (easily misinterpreted as non-faulty samples). Aiming at reducing misclassification, we use the clustering of the SOM approach [1] with modified information criteria for cluster validation. By means of comprehensive computer simulations, we show that the proposed approach is able to cluster successfully the different types of short-circuit faults and can be used for the purpose of sample selection.pt_BR
dc.language.isoenpt_BR
dc.publisherCongresso Brasileiro de Inteligência Computacionalpt_BR
dc.titleEfficient selection of data samples for fault classification by the clustering of the SOMpt_BR
dc.typeArtigo de Eventopt_BR
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2017_eve_gabarreto.pdf414,94 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.