Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/70688
Tipo: Artigo de Evento
Título : Detection of short circuit faults in 3-phase converter-fed induction motors using kernel SOMs
Autor : Coelho, David Nascimento
Barreto, Guilherme de Alencar
Medeiros, Cláudio Marques de Sá
Fecha de publicación : 2017
Editorial : International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization
Citación : COELHO, D. N.; BARRETO, G. A.; MEDEIROS, C. M. S. Detection of short circuit faults in 3-phase converter-fed induction motors using kernel SOMs. In: INTERNATIONAL WORKSHOP ON SELF-ORGANIZING MAPS AND LEARNING VECTOR QUANTIZATION, CLUSTERING AND DATA VISUALIZATION, 12., 2017, Nancy. Anais... Nancy: IEEE, 2017. p. 1-7.
Abstract: In this work we report the results of a comprehensive study involving the application of kernel self-organizing maps (KSOM) for early detection of interturn short-circuit faults in a three-phase converter-fed induction motor. For this purpose, two paradigms for developing KSOM-based classifiers are evaluated on the problem of interest, namely the gradient descent based KSOM (GD-KSOM) and the energy function based KSOM (EF-KSOM). Their performances are contrasted on a real-world dataset generated by means of a laboratory scale testbed that allows the simulation of different levels of interturn short-circuits (high and low impedance) for different load conditions. Feature vectors are built from the FFT-based spectrum analysis of the stator current, a non-invasive method known as the stator current signature. The performances of the aforementioned KSOM paradigms are evaluated for different kernel functions and for different neuron labeling strategies. The obtained results are compared with those achieved by standard SOM-based classifier.
URI : http://www.repositorio.ufc.br/handle/riufc/70688
Aparece en las colecciones: DETE - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2017_eve_gabarreto.pdf476,27 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.