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Abstract—In this work we report the results of a compre-
hensive study involving the application of kernel self-organizing
maps (KSOM) for early detection of interturn short-circuit
faults in a three-phase converter-fed induction motor. For this
purpose, two paradigms for developing KSOM-based classifiers
are evaluated on the problem of interest, namely the gradient
descent based KSOM (GD-KSOM) and the energy function
based KSOM (EF-KSOM). Their performances are contrasted
on a real-world dataset generated by means of a laboratory
scale testbed that allows the simulation of different levels of
interturn short-circuits (high and low impedance) for different
load conditions. Feature vectors are built from the FFT-based
spectrum analysis of the stator current, a non-invasive method
known as the stator current signature. The performances of the
aforementioned KSOM paradigms are evaluated for different
kernel functions and for different neuron labeling strategies. The
obtained results are compared with those achieved by standard
SOM-based classifier.

I. INTRODUCTION

Induction motors comprise a class of simple, efficient
and robust electric equipments with ubiquitous presence in
modern industry [1], [2], [3]. As such, they are responsible
for impressive numbers, for example, they correspond to
approximately 40 to 50% of all the generated power capacity
of an industrialized nation [2].

It is considered a very robust equipment because it can
present acceptable performance even under very hazardous
conditions, but machine aging, successive exposure to hard
environmental conditions, inadequate use, and lack of preven-
tive maintenance, eventually lead induction motors to present
different types of faults [1], [4]. Failure rates are conservatively
estimated as 3-5% per year [5], with the most common ones
being related to bearing faults, stator or rotor insulation faults,
open bars or crack of the rings, and eccentricity [4], [6].

Of particular interest to this work is the insulation break-
down in the stator winding, a type of fault that causes inter-
turn short-circuit currents, and corresponds to nearly 40% of
the total motor failures [4], [7]. Such a problem initially is
characterized by a high impedance fault [8]; that is, short-
circuit currents are of low intensity, making them difficult to
detect at early stages. However, even initially small, short-
circuit current gradually promotes local heating at the site of
the insulation breakdown as time passes, causing the failure to
spread quickly across the winding [9].

If this type of fault is detected at early stages, by means
of a procedure called Incipient Interturn Fault Diagnosis,
maintenance teams can act to avoid sudden stops of production
lines and save production costs, minimizing also the damages
to the induction machine, which can be reused after the motor
rewinding [10]. Since the stator winding interturn short-circuit
takes just few minutes to evolve [2] and due to all the impact
an unscheduled production downtime can have in the whole
involved supply chain, it is highly desirable to develop fault
monitoring tools to reduce costs and increase the probability
of saving the machines. Bearing this in mind, previous studies
have advanced in this direction.

For example, in [11], neural network architectures and
the wavelet transform are used in order to detect temporary
short circuit in induction motor winding. In [12], the authors
apply a two-dimensional Self-Organizing Map (SOM) [13]
for detecting incipient short-circuit faults in an induction
motor, achieving 88.63% as the best accuracy rate. In [14], a
wavelet based probabilistic neural network is used for interturn
fault detection. In [15], several pattern classifiers, including
the Multi-layer Perceptron (MLP) [16], Extreme Learning
Machine (ELM) [17], Support-Vector Machine (SVM) [18],
Least-Squares Support-Vector Machine (LSSVM) [19], and the
Minimal Learning Machine (MLM) [20], have their perfor-
mances compared in the detection of incipient short circuit of
an induction motor.

Motivated by the promising results reported in the afore-
mentioned works, we present a comprehensive study involving
the application of two kernelized variants of the SOM [21],
[22], [23] for the detection of interturn short-circuit faults in a
three-phase converter-fed induction motor. Their performances
are contrasted with those achieved by the standard SOM-based
classifier on a real-world dataset. A laboratory scale testbed
allows the simulation of different levels of interturn short-
circuits (high and low impedance) for different load conditions.
The stator current signature method, which is a non-invasive
FFT-based method for spectrum analysis of the stator current,
is chosen as the feature extraction method. The performances
of all classifiers are evaluated for different kernel functions
and for different neuron labeling strategies.

The remainder of the paper is divided as follows. The SOM
algorithm and neuron labeling strategies are briefly presented
in Section II. kernel SOM algorithms are described in detail
in Section III. In Section IV, we describe the laboratory scale
experimental testbed mounted to generate the dataset to be978-1-5090-6638-4/17/$31.00 c©2017 IEEE
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used for training and testing of the classifiers. The obtained
results are reported and discussed in Section V. The paper is
concluded in Section VI.

II. BASICS OF THE SOM ALGORITHM

The Self-Organizing Map (SOM) is an unsupervised com-
petitive learning algorithm [13]. The SOM learns from ex-
amples a mapping (projection) from a high-dimensional con-
tinuous input space X onto a low-dimensional discrete space
(lattice) A of Q neurons which are arranged in fixed topo-
logical forms, e.g., as a rectangular 2-dimensional array.
The map i∗(x) : X → A, defined by the weight matrix
W = {w1,w2, . . . ,wC},wi ∈ Rp ⊂ X , assigns to each
input vector x(n) ∈ Rp ⊂ X a winning neuron i∗(n) ∈ A,
determined by

i∗(n) = arg min
∀i
‖x(n)−wi(n)‖2, (1)

where ‖ · ‖ denotes the Euclidean distance and n symbolizes
a discrete time step associated with the iterations of the
algorithm.

The weight vector of the current winning neuron as well
as the weight vectors of its neighboring neurons are simulta-
neously adjusted according to the following learning rule:

wi(n+ 1) = wi(n) + η(n)h(i∗, i;n)[x(n)−wi(n)] (2)

where 0 < η(n) < 1 is the learning rate and h(i∗, i;n) is
a weighting function which limits the neighborhood of the
winning neuron. A usual choice for h(i∗, i;n) is given by the
Gaussian function:

h(i∗, i;n) = exp

(
−‖ri(n)− ri∗(n)‖2

2σ2(n)

)
(3)

where ri(n) and ri∗(n) are respectively, the coordinates of
the neurons i and i∗ in the output array, and σ(k) > 0 defines
the radius of the neighborhood function at iteration n. The
variables η(n) and σ(n) have to decay with time in order to
guarantee convergence of the weight vectors to stable steady
states. In this paper, we adopt a linear decay for both variables:

η(n) = η0

(
1− n

nmax

)
and σ(n) = σ0

(
1− n

nmax

)
, (4)

where η0 and σ0 are the initial values of η(n) and σ(n)),
respectively; nmax is the maximum number of iterations.

Weight adjustment is performed until a steady state of
global ordering of the weight vectors has been achieved. In
this case, we say that the map has converged. The resulting
map also preserves the topology of the input samples in the
sense that adjacent patterns are mapped into adjacent regions
on the map. Due to this topology-preserving property, the SOM
is able to cluster input information and spatial relationships of
the data on the map. Despite its simplicity, the SOM algorithm
has been applied to a variety of complex problems [24], [25],
[26] and has become one of the most popular artificial neural
networks.

A. SOM Labeling Strategies

Since the SOM is an unsupervised learning algorithm, it
requires post-training neuron labeling strategies in order to be
applied to pattern classification problems. During the neuron
labeling phase, training data samples are presented once more
to the SOM, but the weights are not updated. Once this phase is
concluded, the SOM becomes a prototype based classifier [27],
[28]. Basically, all neuron labeling strategies aim at associating
to each SOM neuron a class label, so that the nearest prototype
rule in Eq. (1) is used for pattern classification purposes.

Three labeling methods are used in this paper, namely:
the minimum distance, the average distance and the majority
voting method. These methods are briefly discussed next.

• For the minimum distance method, the simplest one,
the neuron inherits the label of its closest training
sample.

• In the average distance method, one first needs
to compute the distances from a given neuron to
the samples of all classes which are mapped to this
neuron. Then, compute the average distance per class.
Finally, the neuron receives the label of the class
whose associated average distance is the smallest one.

• In the majority voting method, each neuron inherits
the most frequent class label among the labels of the
samples mapped to it.

In the next section, we discuss two different paradigms for
obtaining kernelized versions of the SOM algorithm.

III. KERNEL SOM BASED CLASSIFIERS

In recent years, kernel-based methods have been proposed
with the aim of developing nonlinear versions of linear super-
vised or unsupervised machine learning algorithms [29]. The
underlying idea is to apply a kernel function k(·, ·) : X ×X →
R to any pair of training vectors so that the result can be
interpreted as an inner product of a mapping function φ(x),
where φ : X → F , and F is a high-dimensional reproducing
kernel Hilbert space (RKHS) (a.k.a. the feature space) [30]:
k(xi,xj) = φ(xi)

Tφ(xj).

It should be noted that the nonlinear feature mapping φ(·)
is usually unknown. Thus, by means of the kernel function,
inner products in the feature space are computed implicitly,
i.e. without using the feature vectors directly. This appealing
property of kernel methods has then been referred to as the
kernel trick. If the kernel is a Mercer kernel, then for any
finite set of samples {x1, . . . ,xN}, the matrix whose entries
are ki,j = k(xi,xj) is positive definite (PD) [18]. This means
the resulting kernel matrix has only non-negative eigenvalues,
a property that guarantees a convex optimization problem and
hence, the existence of a unique solution.

From the exposed, following the recent tendency of kernel-
izing standard machine learning algorithms, kernel versions of
the SOM have been proposed [31], [32], [33], [23], [34], [22],
[21], [35]. The kernel SOM variant introduced in [21] and [22],
which has been named the gradient descent based KSOM (GD-
KSOM) in [23], uses Eq. (1) for finding the winning neuron
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for a given input pattern. However, its weight updating rule is
different from that of the original SOM, being now written as

wi (n+ 1) = wi (n) + η (n)h (i∗, i, n)∇Ji(x(n)), (5)

where firstly we define the function Ji (x(n)) as

Ji(x(n)) = ‖φ(x(n))− φ(wi(n))‖2 , (6)
= (φ(x(n))− φ(wi(n)))T (φ(x(n))− φ(wi(n))),

= φ(x(n))Tφ(x(n)) + φ(wi(n))Tφ(wi(n))

−2φ(x(n))Tφ(wi(n)),

= k(x(n),x(n)) + k(wi(n),wi(n))

−2k(x(n),wi(n)),

and then we get the gradient descent vector as follows:

∇Ji(x(n))) =
∂Ji(x(n))

∂wi(n)
, (7)

=
∂k(wi(n),wi(n))

∂wi(n)
− 2

∂k(x(n),wi(n))

∂wi(n)
.

An alternative kernel SOM variant was introduced in [23]
and has been named as the energy function based Kernel SOM
(EF-KSOM). This time the winning neuron is found by the
following search procedure:

i∗(n) = arg min
∀i
‖φ (x(n))− φ (wi(n))‖2 , (8)

= arg min
∀i

Ji(x(n)),

where Ji(x(n)) is already defined in Eq. (6). For classification
purposes, the expression Ji(x(n)) can be replaced by

J̄i(x(n)) = k(wi(n),wi(n))− 2k(x(n),wi(n)), (9)

since the term k(x(n),x(n)) is independent of the neuron
index i. Finally, the weight update rule for the EF-KSOM is
then given by

wi (n+ 1) = wi (n) + η (n)h (i∗, i, n)∇Ji(x(n)), (10)

where the gradient vector ∇Ji(x(n)) is defined as in Eq. (7).

It should be noted that the only difference between the GD-
KSOM and EF-KSOM is in the way these algorithms select
the winning neuron in the feature space. The former executes
this operation in the input space, while the latter executes it
in the feature space. If a linear kernel function is chosen, i.e.
k(xi,xj) = xT

i xj , both the GD-KSOM and the EF-KSOM
reduces to the original SOM algorithm.

In what concern the choice of the kernel function, many
options are available elsewhere. In this paper, we use the
Gaussian, the Cauchy and the Log kernel functions, which
are described next.

A. Gaussian Kernel function

For two given vectors, x ∈ Rp and y ∈ Rp, the Gaussian
kernel function has the following general form:

k(x,y) = exp

(
−‖x− y‖2

2γ2

)
, (11)

where γ > 0 is a scale parameter (a.k.a. the width parameter,
in the current context). When this kernel function is inserted
into Eq. (6), we get

Ji(x(n)) = 2− 2 exp

(
−‖x(n)−wi(n)‖2

2γ2

)
, (12)

from which we can obtain the gradient term to be used in the
KSOM learning rule:

∇Ji(x(n)) =
1

2γ2
exp

(
−‖x(n)−wi(n)‖2

2γ2

)
(x(n)−wi(n)).

(13)

A suitable value for the hyperparameter γ should be care-
fully tuned to the problem at hand [36]. If it is overestimated,
the exponential behaves almost linearly and the projection to
high-dimensional feature space loses its nonlinear character. If
it is underestimated, the function will lack regularization and
decision boundaries tend to become highly sensitive to noise
in training data.

B. Cauchy Kernel function

The Cauchy kernel function has the following general form:

k(x,y) =

(
1 +
‖x− y‖2

γ2

)−1
, (14)

where γ > 0 is a scale parameter. Inserting this function into
Eq. (6), we get

Ji(x(n)) =
2γ2

γ2 + 1
− 2γ2

γ2 + ‖wi(n)− x(n)‖2
. (15)

The corresponding gradient term for this function is then
given by

∇Ji(x(n)) =
2γ2(wi(n)− x(n))(

γ2 + ‖wi(n)− x(n)‖2
)2 . (16)

This kernel function is a long-tailed kernel, a term bor-
rowed from Probability for denoting distributions in which too
small or too large values have large probability to occur, in
contrast to the Gaussian distribution for which values far from
the mean rarely occur. For this reason, the Cauchy kernel can
be used to give long-range influence and sensitivity over the
high-dimensional feature space [36].

C. Log Kernel function

This kernel function was introduced in [37] and its expres-
sion is given by

k(x,y) = − log
(
‖x− y‖2 + 1

)
, (17)

where log denotes the natural logarithm. Inserting this function
into Eq. (6), we get

Ji(x(n)) = −2 log

(
1 +
‖x(n)−wi(n)‖2

γ2

)
, (18)
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while the corresponding gradient term for this function is given
by

∇Ji(x(n)) =
4(x(n)−wi(n))

σ2 + ‖x(n)−wi(n)‖2
. (19)

The Cauchy kernel function belongs to a class of “not
strictly positive definite” kernel functions, named conditionally
definite positive kernel functions1, which has been shown
anyway to perform very well in many practical applications.

IV. EXPERIMENTAL TESTBED AND DATASET
GENERATION

A 3-phase squirrel-cage induction motor built by WEG2

industry is used in this study. Its main characteristics are
0.75 kW (power), 220/380 V (nominal voltage), 3.02/1.75
A (nominal current), 79.5% (efficiency), 1720 rpm (nominal
rotational speed), Ip/In = 7.2 (peak to nominal current ratio),
and 0.82 (power factor). The dataset is generated with this
motor operating in different working conditions. The modules
of the laboratory scale test bed are shown in figure 1, and are
hereafter explained.

Fig. 1. Modules of the laboratory test bed and the data acquisition system.

Firstly, a Foucault’s braking system is used in order to
apply three different levels of load: 0% (no load), 50% of
nominal load and 100% (full load). Details about the procedure
for applying the load are thoroughly described in [12].

In order to vary the speed of the motor, a frequency
converter (also known as inverter drive) WEG CFW-09 is
utilized with seven different frequencies: 30 Hz, 35 Hz, 40 Hz,
45 Hz, 50 Hz, 55 Hz and 60 Hz. It is worth mentioning that
only open loop operation is used with this frequency converter.
Moreover, three Hall effect sensors are used to measure the line
currents of each phase of this frequency converter.

The motor was rewound so that some extra taps were made
available by exposing the stator winding turns3 of each phase.
This was done in order to simulate different inter-turn short-
circuit scenarios. In this work, three different levels of fault are
used. In the lowest level (level 1), 5 turns were short-circuited,
totaling 1.41% of the turns of one phase. In the intermediate

1Let X be a nonempty set. A kernel k(·, ·) is called conditionally positive
definite if and only if it is symmetric and

∑n
j,k cjckk(xj ,xk) ≥ 0, for

n ≥ 1, c1, . . . , cn ∈ R with
∑n

j=1 cj = 0 and x1, . . . ,xn ∈ X .
2http://www.weg.net/institutional/BR/en/
3

TABLE I. OPERATION CONDITIONS OF THE MOTOR

Components of the feature vector
Load Level 0% 50% 100%
Converter Phase Ph 1 Ph 2 Ph 3

Converter Frequency 30
Hz

35
Hz

40
Hz

45
Hz

50
Hz

55
Hz

60
Hz

Fault Extension Normal HI1 HI2 HI3 LI1 LI2 LI3

level (level 2), 17 turns (4.8%) were short-circuited. Finally,
in the highest level (level 3), 32 turns (9.26%) were short-
circuited.

An auxiliary command system was built to execute two
kinds of short-circuit schemes: high impedance (aiming at
simulating the initial low-current state of a short-circuit) and
the low impedance. With these two short-circuit schemes and
three levels of faults, there are six different fault conditions of
the motor. Short-circuit current levels leading to either low or
high impedance faults are controlled by resistors in order to
protect the motor from permanent damages.

All the operation conditions of the motor are shown in
Table I, where the load level applied to the motor, the phase
identification, the frequency of the voltage applied by the
frequency converter and the fault extension are specified. In
this last operation condition, the letter H denotes a high
impedance fault, the letter L denotes a low impedance fault,
while the numbers 1, 2 and 3 stands for the level of the fault.
All these conditions sums up to total of 441 (3 × 3 × 7 × 7)
time domain sample vectors.

As shown in Figure 1, the motor was delta connected. In
this configuration, two line currents of the frequency converter
are directly connected to the faulty phase of the motor. As
we aim at developing a monitoring system able to detect
faults using just one phase of the converter, just one of
these previously mentioned phases was used in order to avoid
redundancy of information. Thus, 294 samples are used: 147
from phase 1 (directly connected to the fault current) and 147
from phase 3 (indirectly connected to the fault current). These
samples are represented in figure 2.

Fig. 2. Data Acquisition Scheme.

As can be inferred from Table I, the task of interest can
be approached as a multi-class problem, if one considers
each fault extension as a class (normal, H1, H2, H3, L1,
L2, L3). As such, each class has 42 samples. Alternatively,
one can rearrange data samples into three classes, namely:
normal condition (with 42 samples), high impedance fault
(with 126 samples, merging the classes HI1, HI2 and HI3)
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or low impedance fault (also with 126 samples, merging the
classes LI1, LI2 and LI3).

In this work, however, we are interested in detecting any
kind of fault, independently of the impedance level. Hence,
the problem is treated henceforth as a binary classification
problem: normal (class 1) or faulty condition (class 2). By
doing so, there are 252 samples in class 2, resulting from the
merging of the classes H1, H2, H3, L1, L2 and L3. Class 1
remains with 42 samples.

In this dataset, by “sample” we mean a current signal
stored as a vector of 100,000 components, resulting from 10
seconds of acquisition with a 10 kHz sampling frequency. To
generate the feature vectors for classification purposes, the Fast
Fourier Transform (FFT) is used. The procedure for building
the feature vector for each current signal is comprised of the
following steps:

Step 1 - Define the load condition of the motor.
Step 2 - Define the fundamental frequency (fc) of the

converter drive.
Step 3 - Read the current signal for 10s at a 10KHz

sampling rate.
Step 4 - Apply the FFT to the current signal. Since the

output of the FFT is comprised of a sequence of
complex numbers, take their absolute values.

Step 5 - Find the frequency corresponding to the maxi-
mum value of the computed spectrum. Denote it
as f̂c, since it is an estimate of fc (see Step 2).

Step 6 - Build the associated 6-dimensional feature vec-
tor by selecting the corresponding FFT out-
put values for the following harmonics of f̂c:
{0.5f̂c, 1.5f̂c, 2.5f̂c, 3f̂c, 5f̂c, 7f̂c}.

The rationale for using the current signature approach is
given in [38], who reports that there are no novel components
in stator motor current frequency spectrum due to the short-
circuit fault, but rather an increase in some existing compo-
nents. In [12], the estimated converter’s fundamental frequency
(f̂c) itself and the second harmonic (2f̂c) were also used as
input features for a SOM-based classifiers in addition to the
aforementioned six ones (see Step 6). However, in [39] those
two additional features were not found to be relevant for fault
detection purposes.

In summary, the dataset is comprised of 294 6-dimensional
feature vectors (252 labelled as faulty, 42 labelled as normal),
in which the attribute values represents the FFT values for
the chosen 6 harmonics of the fundamental frequency of the
converter drive. In the next section we present the results of
performance comparison carried out in this work.

V. RESULTS AND DISCUSSION

For all the following experiments, the feature vectors are
normalized to zero mean and unit variance. All neural models
were implemented from scratch using the MATLAB software,
version R2013a (8.1.0.604), running on Windows 10 Home,
installed in a Dell notebook, Core i7, 1.60GHz, 8GB RAM.

In the following experiments, seven KSOM variants are
evaluated: the standard two-dimensional SOM (SOM-2D); the
KSOM-GD with three different kernels - Gaussian (KSOM-
GD-G), Cauchy (KSOM-GD-C) and Log (KSOM-GD-L); and

TABLE II. ACCURACIES OF THE EVALUATED SOM AND KSOM
CLASSIFIERS FOR DIFFERENT LABELING METHODS.

Labeling method MD AD MV
Classifier max mean max mean max mean
SOM-2D 0.966 0.829 0.949 0.858 0.949 0.736
KSOM-GD-G 0.949 0.829 0.932 0.858 0.932 0.773
KSOM-GD-L 0.915 0.831 0.949 0.863 0.898 0.758
KSOM-GD-C 0.949 0.826 0.949 0.854 0.915 0.756
KSOM-EF-G 0.932 0.827 0.949 0.858 0.881 0.765
KSOM-EF-L 0.949 0.861 0.949 0.858 0.881 0.727
KSOM-EF-C 0.949 0.861 0.949 0.844 0.898 0.737

the KSOM-EF with the same kernels (KSOM-EF-G, KSOM-
EF-C, KSOM-EF-L). The three labeling methods described in
Subsection II-A are used to convert the SOM and the KSOM
variants into pattern classifiers. They are identified by letters as
follows: minimum distance (MD), average distance (AD) and
majority voting (MV). After intensive prior experimentation,
the hyperparameter γ for the three kernel functions was set to
γ = 0.5. A rectangular grid of dimensions 5 × 4 is used for
all the SOM and KSOM classifiers evaluated in this paper.

For each evaluated classifier, 50 independent training-
labeling-testing runs are executed. For each run, four steps are
performed, namely: (i) holdout (partition of the data between
training and test sets), (ii) unsupervised training, (iii) neuron
labeling and (iv) performance testing. For the holdout step,
the data is randomly divided as follows: 80% for training
and remaining 20% for test. At the end of test phase, several
statistical figures of merit for the performance of each classifier
are computed.

The achieved values of the figures of merits are reported in
Table II, for all evaluated kernel SOM-based classifiers. Best
average performances are highlighted in bold for each labeling
method. If we take the best performances for each labeling
method in separate, we have the following relevant results: the
best performances for the MD method were achieved by far by
the KSOM-EF-L and KSOM-EF-C classifiers; while, for the
AD method the best performance was achieved by the KSOM-
GD-L classifier. For the MV method, the best performance was
achieved by the KSOM-GD-G classifier, but this performance
is quite inferior to those reported by any other classifier using
the MD and AD labeling methods.

By contrasting the results reported in Table II for the MD
and AD methods, it is possible to infer that the former leads
to mean values with higher variance across the classifiers than
the latter. This behavior is more easily observed in Figures 3
and 4, where we show the boxplots of the accuracy rates
for all evaluated classifiers. For the sake of completeness, the
boxplots of the accuracy rates for all evaluated classifiers using
the majority voting method is shown in Figure 3.

In Figure 3 it is evident that the best performances were
achieved by the KSOM-EF-L and KSOM-EF-C classifiers
when the MD method was used. These classifiers also pre-
sented the smaller dispersion in comparison to the others. In
Figure 4 the performance of the KSOM-GD-L classifier is
closely followed by that of the standard SOM-2D classifier.
This occurred because, as mentioned before, the use of the AD
method led to a lower variance of the mean values across the
classifiers, improving the overall performances of all classifiers
as a whole.

In Tables III and IV, we report the confusion matrices
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for the best performing classifiers using the MD labeling
method. In Table V we report the confusion matrices for the
best performing classifier using the AD labeling method. In
these tables we show the confusion matrices of the classifier
realizations that produced the best and worst values for the
accuracy rate among the 50 training-testing runs.

Fig. 3. Boxplots of the achieved accuracy rates for all evaluated classifiers
using the minimum distance labeling method.

Fig. 4. Boxplots of the achieved accuracy rates for all evaluated classifiers
using the average distance labeling method.

Fig. 5. Boxplots of the achieved accuracy rates for all evaluated classifiers
using the majority voting labeling method.

It can be observed in the confusion matrices a tendency
to misclassify normal samples as faulty ones (a false positive

TABLE III. CONFUSION MATRICES FOR THE KSOM-EF-L CLASSIFIER
USING THE MD LABELING METHOD (BEST AND WORST CASES).

BEST CASE
KSOM-EF-L Actual Class

Predicted class Normal Faulty
Normal 2 0
Faulty 1 56

WORST CASE
KSOM-EF-L Actual Class

Predicted class Normal Faulty
Normal 7 0
Faulty 7 45

TABLE IV. CONFUSION MATRICES FOR THE KSOM-EF-C CLASSIFIER
USING THE MD LABELING METHOD (BEST AND WORST CASES).

BEST CASE
KSOM-EF-C Actual Class

Predicted class Normal Faulty
Normal 2 0
Faulty 1 56

WORST CASE
KSOM-EF-C Actual Class

Predicted class Normal Faulty
Normal 8 0
Faulty 6 45

error). This behavior can be explained by the fact that the
dataset is highly unbalanced, with much more faulty examples
than normal ones. This problem can be somewhat alleviated
by resampling normal samples during training with higher
probability than the faulty ones. Inclusion of artificially gener-
ated normal samples in the training data can also reduce false
positive rates, improving the classification performance as a
whole.

VI. CONCLUSIONS AND FURTHER WORK

In this paper, we reported the results of a comprehensive
application of kernelized variants of the SOM algorithm for
the detection of short circuit faults in converter-fed three-
phase induction motors. We have shown that the obtained
results are highly dependent on the neuron labeling method
and also on the kernel function. As could be inferred from the
presented results, the average distance labeling method seemed
to be more stable, leading to a lower variance of the mean
accuracy values across the classifiers, improving the overall
performances of all classifiers as a whole, including the one
based on the standard SOM. Among the three kernel functions
used in the experiments, the log kernel function led to the best
performing classifier.

Currently, we are evaluating the KSOM-based classifiers
described in this paper on the same fault detection problem,
but this time we are following the novelty/anomaly detection
paradigm [40], [41]. According to this paradigm, only one of
the classes (usually, the one with higher number of examples)
is modeled/learned by a single classifier. New incoming sam-
ples which do not fit to the learned model are classified as
anomalous. Based on the first results, this approach is very
promising.
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TABLE V. CONFUSION MATRICES FOR THE KSOM-GD-L CLASSIFIER
USING THE AD LABELING METHOD (BEST AND WORST CASES).

BEST CASE
KSOM-GD-L Actual Class

Predicted class Normal Faulty
Normal 1 0
Faulty 2 56

WORST CASE
KSOM-GD-L Actual Class

Predicted class Normal Faulty
Normal 1 0
Faulty 6 52
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