Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/70645
Tipo: | Artigo de Periódico |
Título: | SDMA grouping based on unsupervised learning for multi-user MIMO systems |
Autor(es): | Costa Neto, Francisco Hugo Maciel, Tarcísio Ferreira |
Palavras-chave: | SDMA grouping;Multi-User MIMO;Hybrid beamforming;Unsupervised learning;Clustering |
Data do documento: | 2020 |
Instituição/Editor/Publicador: | Journal of Communication and Information Systems |
Citação: | MACIEL, T. F.; COSTA NETO, F. H. SDMA grouping based on unsupervised learning for multi-user MIMO systems. Journal of Communication and Information Systems, [s.l.], v. 35, n. 1, p. 124-132, 2020. DOI: https://doi.org/10.14209/jcis.2020.13 |
Abstract: | In this study, we investigate a spatial division multiple access (SDMA) grouping scheme to maximize the total data rate of a multi-user multiple input multiple output (MU-MIMO) system. Initially, we partition the set of mobile stations (MSs) into subsets according to their spatial compatibility. We explore different clustering algorithms, comparing them in terms of computational complexity and capability to partition MSs properly. Since we consider a scenario with a massive arrange of antenna elements and that operates on the mmWave scenario, we employ a hybrid beamforming scheme and analyze its behavior in terms of the total data rate. The analog and digital precoders exploit the channel information obtained from clustering and scheduling, respectively. The simulation results indicate that a proper partition of MSs into clusters can take advantage of the spatial compatibility effectively and reduce the multi-user (MU) interference. The hierarchical clustering (HC) enhances the total data rate 25% compared with the baseline approach, while the density-based spatial clustering of applications with noise (DBSCAN) increases the total data rate 20%. |
URI: | http://www.repositorio.ufc.br/handle/riufc/70645 |
ISSN: | 1980-6604 |
Aparece nas coleções: | DETE - Artigos publicados em revista científica |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2020_art_tfmaciel.pdf | 530,69 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.