Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/70645
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorCosta Neto, Francisco Hugo-
dc.contributor.authorMaciel, Tarcísio Ferreira-
dc.date.accessioned2023-02-09T11:32:38Z-
dc.date.available2023-02-09T11:32:38Z-
dc.date.issued2020-
dc.identifier.citationMACIEL, T. F.; COSTA NETO, F. H. SDMA grouping based on unsupervised learning for multi-user MIMO systems. Journal of Communication and Information Systems, [s.l.], v. 35, n. 1, p. 124-132, 2020. DOI: https://doi.org/10.14209/jcis.2020.13pt_BR
dc.identifier.issn1980-6604-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/70645-
dc.description.abstractIn this study, we investigate a spatial division multiple access (SDMA) grouping scheme to maximize the total data rate of a multi-user multiple input multiple output (MU-MIMO) system. Initially, we partition the set of mobile stations (MSs) into subsets according to their spatial compatibility. We explore different clustering algorithms, comparing them in terms of computational complexity and capability to partition MSs properly. Since we consider a scenario with a massive arrange of antenna elements and that operates on the mmWave scenario, we employ a hybrid beamforming scheme and analyze its behavior in terms of the total data rate. The analog and digital precoders exploit the channel information obtained from clustering and scheduling, respectively. The simulation results indicate that a proper partition of MSs into clusters can take advantage of the spatial compatibility effectively and reduce the multi-user (MU) interference. The hierarchical clustering (HC) enhances the total data rate 25% compared with the baseline approach, while the density-based spatial clustering of applications with noise (DBSCAN) increases the total data rate 20%.pt_BR
dc.language.isoenpt_BR
dc.publisherJournal of Communication and Information Systemspt_BR
dc.subjectSDMA groupingpt_BR
dc.subjectMulti-User MIMOpt_BR
dc.subjectHybrid beamformingpt_BR
dc.subjectUnsupervised learningpt_BR
dc.subjectClusteringpt_BR
dc.titleSDMA grouping based on unsupervised learning for multi-user MIMO systemspt_BR
dc.typeArtigo de Periódicopt_BR
Aparece en las colecciones: DETE - Artigos publicados em revista científica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2020_art_tfmaciel.pdf530,69 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.