Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/70645
Tipo: | Artigo de Periódico |
Título : | SDMA grouping based on unsupervised learning for multi-user MIMO systems |
Autor : | Costa Neto, Francisco Hugo Maciel, Tarcísio Ferreira |
Palabras clave : | SDMA grouping;Multi-User MIMO;Hybrid beamforming;Unsupervised learning;Clustering |
Fecha de publicación : | 2020 |
Editorial : | Journal of Communication and Information Systems |
Citación : | MACIEL, T. F.; COSTA NETO, F. H. SDMA grouping based on unsupervised learning for multi-user MIMO systems. Journal of Communication and Information Systems, [s.l.], v. 35, n. 1, p. 124-132, 2020. DOI: https://doi.org/10.14209/jcis.2020.13 |
Abstract: | In this study, we investigate a spatial division multiple access (SDMA) grouping scheme to maximize the total data rate of a multi-user multiple input multiple output (MU-MIMO) system. Initially, we partition the set of mobile stations (MSs) into subsets according to their spatial compatibility. We explore different clustering algorithms, comparing them in terms of computational complexity and capability to partition MSs properly. Since we consider a scenario with a massive arrange of antenna elements and that operates on the mmWave scenario, we employ a hybrid beamforming scheme and analyze its behavior in terms of the total data rate. The analog and digital precoders exploit the channel information obtained from clustering and scheduling, respectively. The simulation results indicate that a proper partition of MSs into clusters can take advantage of the spatial compatibility effectively and reduce the multi-user (MU) interference. The hierarchical clustering (HC) enhances the total data rate 25% compared with the baseline approach, while the density-based spatial clustering of applications with noise (DBSCAN) increases the total data rate 20%. |
URI : | http://www.repositorio.ufc.br/handle/riufc/70645 |
ISSN : | 1980-6604 |
Aparece en las colecciones: | DETE - Artigos publicados em revista científica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2020_art_tfmaciel.pdf | 530,69 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.