Please use this identifier to cite or link to this item: http://repositorio.ufc.br/handle/riufc/69734
Type: Artigo de Periódico
Title: Conditions for the existence of a generalization of Rényi divergence
Authors: Vigelis, Rui Facundo
Andrade, Luiza Helena Félix de
Cavalcante, Charles Casimiro
Keywords: Generalized divergence;Rényi entropy;Information geometry;Existence conditions;Entropia (Teoria da informação)
Issue Date: 2020
Publisher: Physica A: Statistical Mechanics and its Applications
Citation: CAVALCANTE, C. C.; ANDRADE, L. H. F.; VIGÉLIS, R. F. Conditions for the existence of a generalization of Rényi divergence. Physica A: Statistical Mechanics and its Applications, [s.l.], v. 558, 2020. DOI: https://doi.org/10.1016/j.physa.2020.124953
Abstract: We give necessary and sufficient conditions for the existence of a generalization of Rényi divergence, which is defined in terms of a deformed exponential function. If the underlying measure is non-atomic, we found that not all deformed exponential functions can be used in the generalization of Rényi divergence; a condition involving the deformed exponential function is provided. In the case is purely atomic (the counting measure on the set of natural numbers), we show that any deformed exponential function can be used in the generalization.
URI: http://www.repositorio.ufc.br/handle/riufc/69734
ISSN: 0378-4371
Appears in Collections:DETE - Artigos publicados em revista científica

Files in This Item:
File Description SizeFormat 
2020_art_cccavalcante.pdf493,94 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.