Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/69734
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorVigelis, Rui Facundo-
dc.contributor.authorAndrade, Luiza Helena Félix de-
dc.contributor.authorCavalcante, Charles Casimiro-
dc.date.accessioned2022-12-14T18:21:47Z-
dc.date.available2022-12-14T18:21:47Z-
dc.date.issued2020-
dc.identifier.citationCAVALCANTE, C. C.; ANDRADE, L. H. F.; VIGÉLIS, R. F. Conditions for the existence of a generalization of Rényi divergence. Physica A: Statistical Mechanics and its Applications, [s.l.], v. 558, 2020. DOI: https://doi.org/10.1016/j.physa.2020.124953pt_BR
dc.identifier.issn0378-4371-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/69734-
dc.description.abstractWe give necessary and sufficient conditions for the existence of a generalization of Rényi divergence, which is defined in terms of a deformed exponential function. If the underlying measure is non-atomic, we found that not all deformed exponential functions can be used in the generalization of Rényi divergence; a condition involving the deformed exponential function is provided. In the case is purely atomic (the counting measure on the set of natural numbers), we show that any deformed exponential function can be used in the generalization.pt_BR
dc.language.isoenpt_BR
dc.publisherPhysica A: Statistical Mechanics and its Applicationspt_BR
dc.subjectGeneralized divergencept_BR
dc.subjectRényi entropypt_BR
dc.subjectInformation geometrypt_BR
dc.subjectExistence conditionspt_BR
dc.subjectEntropia (Teoria da informação)pt_BR
dc.titleConditions for the existence of a generalization of Rényi divergencept_BR
dc.typeArtigo de Periódicopt_BR
Aparece en las colecciones: DETE - Artigos publicados em revista científica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2020_art_cccavalcante.pdf493,94 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.