Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/69661
Tipo: Artigo de Evento
Título : Lvq-type classifiers for condition monitoring of induction motors: a performance comparison
Autor : Sousa, Diego Perdigão
Barreto, Guilherme de Alencar
Cavalcante, Charles Casimiro
Medeiros, Cláudio Marques de Sá
Palabras clave : Learning vector quantization;Rototype-based classifiers;Fault detection;Induction motors;Condition monitoring
Fecha de publicación : 2019
Editorial : International Workshop on Self-Organizing Maps
Citación : CAVALCANTE, C. C. et al. Lvq-type classifiers for condition monitoring of induction motors: a performance comparison. In: INTERNATIONAL WORKSHOP ON SELF-ORGANZING MAPS, 13., 2019, Barcelona. Anais... Barcelona, 2019. p. 1-10.
Abstract: In this paper, we introduce a design methodology for prototype-based classifiers, more specifically the well-known LVQ family, aiming at improving their accuracy in fault detection/classification tasks. A laboratory testbed is constructed to generate the datasets which are comprised of short-circuit faults of different impedance levels, in addition to samples of the normal functioning of the motor. The generated data samples are difficult to classify as normal or faulty ones, especially if the faults are of high impedance (usually misinterpreted as non-faulty samples). Aiming at reducing misclassification, we use K-means and cluster validation techniques for finding an adequate number of labeled prototypes and their correct initialization for the efficient design of LVQ classifiers. By means of comprehensive computer simulations, we compare the performances of several LVQ classifiers in the aforementioned engineering application, showing that the proposed methodology eventually leads to high classification rates.
URI : http://www.repositorio.ufc.br/handle/riufc/69661
Aparece en las colecciones: DETE - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2019_eve_cccavalcante.pdf399,7 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.