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Abstract. In this paper, we introduce a design methodology for prototype-
based classifiers, more specifically the well-known LVQ family, aiming at
improving their accuracy in fault detection/classification tasks. A labora-
tory testbed is constructed to generate the datasets which are comprised
of short-circuit faults of different impedance levels, in addition to sam-
ples of the normal functioning of the motor. The generated data samples
are difficult to classify as normal or faulty ones, especially if the faults
are of high impedance (usually misinterpreted as non-faulty samples).
Aiming at reducing misclassification, we use K-means and cluster vali-
dation techniques for finding an adequate number of labeled prototypes
and their correct initialization for the efficient design of LVQ classifiers.
By means of comprehensive computer simulations, we compare the per-
formances of several LVQ classifiers in the aforementioned engineering
application, showing that the proposed methodology eventually leads to
high classification rates.
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1 Introduction

The family of learning vector quantization (LVQ) algorithms is comprised of
prototype-based neural network (NN) models which have been used as alter-
natives to more traditional approaches (e.g. MLP and RBF networks). LVQ
classifiers present classification accuracies at least as high as that of any other
NN algorithm [1] and are simpler to interpret due to the local nature of the
prototypes, which are positioned at representative regions (Voronoi cells) of the
data.

The finest feature of standard LVQ algorithms, that of interpretability due
to the local nature of the prototype vectors, is also their main drawback. That
is, the performance of an LVQ classifier is highly dependent on the prespecified



2 Diego Sousa et al.

number of labeled prototypes. Previous works have been developed trying to
make the set of prototypes either adaptive [2] or optimally determined by means
of evolutionary algorithms [3]. However, in the vast majority of the applications,
that number is set by trial and error or exhaustive grid search (see [4, 5] for
excellent surveys on LVQ-based and other prototype-based classifiers).

From the exposed, in this paper, we aim to introduce a systematic methodol-
ogy for finding a suitable number of prototypes and their reliable initialization.
Roughly speaking, instead of inserting and/or removing prototypes on the fly
as did by adaptive LVQ classifiers, we resort to clustering strategies to find the
optimum number of prototypes per class. For the sake of simplicity, we use the
K-means and well-known cluster validation indices, but any other clustering
methodology can be used as well.

For assessing the proposed methodology we evaluate the state of the art in
LVQ models on a fault detection/classification dataset obtained from 3-phase
AC induction motors. Our target task is the identification of inter-turn short-
circuit faults in the stator winding, which we have been investigating lately
using standard powerful nonlinear classifiers, such as the MLP and the SVM
[6] and SOM techniques [7, 8]. For this purpose, we built a lab scale testbed for
simulating faults of different impedance levels with different degrees of severity.

The remainder of the paper is divided as follows: in section 2, the basics of
cluster validation techniques are presented; in section 3, LVQ-based classifiers
are described; in section 4, the experimental data acquisition is explained; in
section 5 our proposal is introduced and the results are shown and discussed;
finally, in section 6, the conclusions are made.

2 Basics of Cluster Validation Techniques

Techniques for cluster validation are used a posteriori to evaluate the results
of a given clustering algorithm. It should be noted, however, that each cluster
validation technique has its own set of assumptions, so that the final results may
vary across the chosen techniques.

2.1 Cluster Validity Indices

Some well-known indices available in the clustering literature are described next.
We denote K as the number of clusters, Kmax is the maximum allowed number
of clusters, d as the number of features, x̄ as the centroid of the d × N data
matrix X, ni as the number of objects in cluster Ci, ci as the centroid of cluster

Ci, and x
(i)
l as the l-th feature vector, l = 1, . . . , ni, belonging of the cluster Ci.

(i) The Davies-Bouldin (DB) index [9] is a function of the ratio of the sum
of within-cluster scatter to between-cluster separation, and it uses the clusters’
centroids for this purpose. Initially, we need to compute the scatter within the
i-th cluster and the separation between the i-th and j -th clusters, respectively,
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as

Si =

[
1

ni

ni∑
l=1

‖x(i)
l − ci‖2

]1/2
and dij = ‖ci − cj‖ (1)

where ‖ · ‖ is the Euclidean norm. Finally, the DB index is defined as

DB(K) =
1

K

K∑
i=1

Ri, where Ri = max
j 6=i

{
Si + Sj
dij

}
. (2)

The value of K leading to the smallest DB(K) value is chosen as the optimal
number of clusters.
(ii) The Dunn index [10] is represented generically by the following expression:

Dunn(K) =
mini 6=j{δ(Ci, Cj)}
max1≤l≤k{∆(Cl)}

, (3)

where

δ(Ci, Cj) = min
x∈Ci,y∈Cj

{d(x,y)}, and ∆(Ci) = max
x,y∈Ci

{d(x,y)}, (4)

with d(·, ·) denoting a dissimilarity function (e.g. Euclidean distance) between
vectors. Note that, while δ(Ci, Cj) is a measure of separation between clusters
Ci and Cj , ∆(Ci) is a measure of the dispersion of data within the cluster Ci.
The value of K resulting in the largest Dunn(K) value is chosen as the optimal
number of clusters.
(iii) The Calinski-Harabasz (CH) index [11] is a function defined as

CH(K) =
trace(BK)/(K − 1)

trace(WK)/(N −K)
(5)

where BK =
∑K
i=1 ni(ci − x̄)(ci − x̄)T is the between-group scatter matrix for

data partitioned into K clusters, WK =
∑K
i=1

∑ni

l=1(x
(i)
l − ci)(x

(i)
l − ci)

T is
the within-group scatter matrix for data clustered into K clusters. The trace(·)
operator computes the sum of the elements on the main diagonal of a square
matrix. The value of K resulting in the largest CH(K) value is chosen as the
optimal number of clusters.
(iv) The Silhouette (Sil) index [12] is defined as

Sil(K) =

N∑
i=1

S(i)/N, S(i) = [b(i)− a(i)]/max{a(i), b(i)}, (6)

with a(i) representing the average dissimilarity of the i-th feature vector to all
other vectors within the same cluster (except i itself), and b(i) denoting the
lowest average dissimilarity of the i-th feature vector to any other cluster of
which it is not a member. The silhouette can be calculated with any dissimilarity
metric, such as the Euclidean or Manhattan distances. The value of K producing
the largest Sil(K) value is chosen as the optimal number of clusters.
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3 Prototype-Based Classifiers

Let us consider a set of training input-output patterns {(xl, yl)}Nl=1, where xl ∈
Rp denotes the l-th input pattern and yl ∈ C denotes its corresponding class
label. Note that yl is a discrete variable (of either numerical or nominal nature)
which may assume only one out of K values in the finite set C = {c1, c2, . . . , cK}.

Given a set of labeled prototype vectors mi ∈ Rp, i = 1, . . . ,M , for all the
prototype-based classifiers to be described in this section, class assignment for a
new input pattern x(t) is based on the following decision criterion:

Class of x(t) = Class of mc(t), where c = arg min
i=1,...,M

d(x(t),mi(t)), (7)

in which d(·, ·) denotes a dissimilarity measure specific to the extension of
LVQ and c is the index of the nearest prototype among the M ones available. In
the following paragraphs, we briefly described the learning rules for finding the
positions of the prototypes mi, i = 1, . . . ,M in the data space.

Minimum Distance-to-Centroid (MDC) classifier [13]: For this classifier,
we have M = K, i.e. the number of prototypes (M) is equal to the number
of classes (K). In this case, the prototype of the i-th class is computed as the
centroid of class i as mi = 1

ni

∑
x∈ci x, i = 1, . . . ,K, where ni is the number

of training examples of class i.

3.1 LVQ classifiers

For the whole family of LVQ classifiers, we have M > K, i.e. the number of
prototypes (M) is higher than the number of classes (K). As a consequence,
different prototypes may share the same label.

LVQ1 [14]: Let c be defined as in Eq. (7) for a new input pattern x(t). Then,
the prototype mc is updated as follows

mc(t+ 1) = mc(t) + s(t)α(t)[x(t)−mc(t)], (8)

where s(t) = +1 if the classification is correct, and s(t) = −1 if the classification
is wrong, and α is the learning rate.

LVQ2.1 [14]: In this algorithm, two prototypes mi and mj that are the nearest
neighbors to x(t) are now updated simultaneously. One of them (mi, for example)
must belong to the correct class and the other to the wrong class, respectively.
Thus, the learning rules of the LVQ2.1 algorithm are given by

mi(t+ 1) = mi(t) + α(t)[x(t)−mi(t)], (9)

mj(t+ 1) = mj(t)− α(t)[x(t)−mj(t)], (10)

where x(t) must satisfy the following condition:

min

(
di
dj
,
dj
di

)
> s, where s =

1− w
1 + w

, (11)
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where di and dj are the Euclidean distances of x(t) from mi and mj , respectively.
A relatively ‘window’ w width from 0.2 to 0.3 is recommended.

LVQ3 [14]: For scenarios in which x(t), the nearest prototypes mi and mj belong
to the same class, the following updating rule is applicable:

mk(t+ 1) = mk(t) + εs(t)α(t)[x(t)−mk(t)], (12)

for k ∈ {i, j}, with x falling into the ‘window’. In a series of experiments carried
out in [14], feasible values of ε ranging from 0.1 to 0.5 were found, relating to
w = 0.2 or 0.3. The optimal values for ε seems to depend on the size of the
window, being smaller for narrower windows. An important feature of the LVQ3
algorithm is that it is self-stabilizing, in the sense that the optimal placements
of the prototypes do not change in continued learning.

GLVQ [15]: The cost function is defined as follows:

EGLVQ =

N∑
i=1

φ(µ(x)), µ(x) =
d+ − d−

d+ + d−
, (13)

where φ(·) is the identity function for linear GLVQ or the the logistic function
for logistic GLVQ, and µ is the relative distance difference, and d+ = d(x,m+)
is the squared Euclidean distance of the input pattern x(t) to its closest proto-
type m+(t) having the same label, and d− = d(x,m−) is the squared Euclidean
distance of the input pattern x(t) to its closest prototype m−(t) having a dif-
ferent class label. Considering these scenarios, the following updating rules are
applicable:

m+(t+ 1) = m+(t) + α(t)φ′(µ(x))[4d−/(d+ + d−)2][x(t)−m+(t)], (14)

m−(t+ 1) = m+(t)− α(t)φ′(µ(x))[4d+/(d+ + d−)2][x(t)−m−(t)]. (15)

GRLVQ [16, 17]: In this algorithm, the cost function is defined as follows:

EGRLVQ =

N∑
i=1

φ(µ(x)), µ(x) =
d+λ − d

−
λ

d+λ + d−λ
, (16)

where φ(·) is the logistic function, and d+λ = d(x,m+) is the squared Euclidean
weighted distance of input pattern x(t) to its closest prototype m+(t) having
the same label, and d−λ = d(x,m−) is the squared Euclidean weighted distance
of the input pattern x(t) to its closest prototype m−(t) having a different class
label. The relevance factors can be determined by the gradient descent as

λ(t+ 1) = λ(t)− ελ(t)φ′
(

(x−m+)2d−λ − (x−m−)2d+λ
(d+λ + d−λ )2

)
, (17)

where ελ is the gain factor, and λa ≥ 0 for a = 1, . . . , p, and numerical insta-
bilities are avoided by applying the normalization

∑p
a=1 λa = 1. Finally, the

updating rules are shown below:

m+(t+ 1) = m+(t) + α(t)φ′(µ(x))[4d−λ/(d
+
λ + d−λ )2][x(t)−m+(t)], (18)

m−(t+ 1) = m+(t)− α(t)φ′(µ(x))[4d+λ/(d
+
λ + d−λ )2][x(t)−m−(t)]. (19)
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Fig. 1: Modules of the laboratory test bed and the data acquisition system.

4 Results and discussion

In this section, we evaluate the proposed methodology to find the number of
prototypes and its locations for the 3 types of classes existing in the available
dataset, which are represented by the labels N (normal), H (high impedance)
and L (low impedance). The dataset is comprised of 294 6-dimensional labeled
feature vectors, in which the attribute values represent the FFT values for the
chosen 6 harmonics of the fundamental frequency of the converter drive.

A 3-phase squirrel-cage induction motor built by WEG3 industry is used in
this study. Its main characteristics are 0.75 kW (power), 220/380 V (nominal
voltage), 3.02/1.75 A (nominal current), 79.5% (efficiency), 1720 rpm (nominal
rotational speed), Ip/In = 7.2 (peak to nominal current ratio), and 0.82 (power
factor). The dataset is generated with this motor operating in different working
conditions. The modules of the laboratory scale testbed are shown in Fig. 1, and
are hereafter explained.

The task of interest can be approached either as a 3-class problem (ternary
classification) or as a 2-class problem (binary classification). For the ternary
classification, the distribution of samples per class is as follows: normal condition
(with 42 samples), high impedance fault (with 126 samples) or low impedance
fault (also with 126 samples). As a binary classification problem, we merge the
samples from classes H and L and label them simply as Faulty. Further details
on the construction of this dataset and the experimental apparatus built for its
generation is given in [6–8].

For each classifier, 100 independent turns of training and testing are carried
out. For each run, the four steps of the proposed methodology are executed: (i)
the holdout (division of the data set into training and validation data sets); (ii)
determination of the Kopt and prototypes’ initialization via application of clus-
tering and cluster validity techniques per data class; and, (iv) LVQ training and
testing. At the end of each run, the accuracy rate of each classifier is determined.

The 2nd step of the methodology is comprised of two stages. In the first
stage, we apply the K-means algorithm on each class individually, for K =

3 http://www.weg.net/institutional/BR/en/
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(a) N class (b) H class (c) L class

Fig. 2: Histograms of Kopt obtained by applying the majority voting scheme to
the cluster validity techniques along 100 independent runs.

2, 3, · · · ,Kmax = 10 prototypes. For each value of K, we execute 10 independent
runs of the K-means algorithm and choose the set of prototypes {pj}Kj=2 that

produces the lowest MSQE4 for each class. Using these selected sets, we compute
the corresponding values of the cluster validity indices in order to choose the
optimal number of prototypes per class. We use the majority voting of these
cluster validation techniques to make this choice. In the 2nd stage, we initialize
the LVQ classifiers using the selected Kopt prototypes.

The histograms of the suggested optimal number of prototypes per class
resulting from the majority voting scheme along the 100 independent turns are
shown in Fig. 2. By analyzing this figure, it can be seen that the setup with
KN = 2, KH = 3, and KL = 4 is the most frequent one.

The performance of each LVQ-based classifier is shown in Fig. 3a for ternary
classification and in Fig. 3b for binary classification. For the binary setting, we
merge the L and H classes into a single faulty class. A closer look at these figures
reveals that the linear GLVQ, logistic GLVQ, and GRLVQ classifiers performed
better than the other three. Then, we choose GRLVQ and the linear GLVQ (due
to the smaller computational cost) for further analyses. As shown in Table 1 the
accuracy metrics of these two classifiers were basically the same.

It should be pointed out that as important as maximizing the overall accuracy
rate is minimizing the occurrence of certain types of errors. As observed in [6]
and [8], since the classification task is unbalanced (there are 252 samples of
faulty conditions and only 42 samples of normal conditions), trained algorithms
are biased toward classifying normal samples as faulty ones. This means that
the false alarm rate is undesirably high in this case and should be minimized,
because false alarms force unexpected downtime for maintenance purposes and,
hence, cause an increase in production costs.

4 Mean squared quantization error: MSQE = 1
nk

∑
∀x∈ck

‖x−mk
c‖2, where nk is the

number of data samples of the class ck and mk
c is the nearest prototype belonging

to class ck.
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(a) Accuracy of ternary classification. (b) Accuracy of binary classification.

Fig. 3: Boxplots of accuracy rates achieved by the evaluated LVQ classifiers.

In order to evaluate the linear GLVQ and GRLVQ in this regard, we compared
their confusion matrices for the best case scenario, i.e. the one leading to the
largest classification rate within the 100 independent runs. We observe in the
1st row of Tables 2 and 3 that both classifiers erroneously classified one faulty
sample as a normal one (GLVQ: true L ⇒ N, GRLVQ: true H ⇒ N). However,
only the GLVQ classified a normal sample as a faulty one (GLVQ: true N ⇒
H) as we can see in the 1st column of those same tables. Similar behaviors are
inferred for the binary task by analyzing Tables 4 and 5.

From the reported results, we can infer that the GRLVQ classifier is the best
suited for the fault classification task of interest among all the evaluated LVQ
variants. A nice feature of the GRLVQ is that we can check the relevance weights
in order to have a clear notion which input attributes have more influence on
the performance of the GRLVQ classifier. By analyzing the relevance weights’
vector given by

λ = [λ0.5f̂c | λ1.5f̂c | λ2.5f̂c | λ3f̂c | λ5f̂c | λ7f̂c ]

= [0.1373|0.0952|0.1757|0.2277|0.1689|0.1952],
(20)

we can see that the 4th attribute (λ3f̂c) is the most relevant one, while the 2nd

attribute (λ1.5f̂c) is the least relevant one.

5 Conclusions and Further Work

In this paper, we introduced a clustering-based methodology for building efficient
LVQ-based classifiers. Our motivation had its origin in a complex fault classifica-
tion task in which we have been working now for some years. The target task of
detecting inter-turn short-circuit faults is challenging (even for human experts)
because of the high probability of misinterpretation of high impedance faults as
normal ones. Previous experience with powerful supervised neural network based
classifiers, such as the MLP and RBF networks, has challenged us to apply much
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Min Max Median Std

Ternary
GLVQ 44.068% 72.881% 55.932% 5.575
GRLVQ 45.763% 69.491% 55.932% 5.602

Binary
GLVQ 76.271% 96.610% 88.136% 3.606
GRLVQ 77.966% 98.305% 88.136% 3.574

Table 1: Accuracy rates for the ternary and binary classification tasks achieved
by linear GLVQ and GRLVQ classifiers.

Linear
GLVQ

Actual C.
N H L

Predicted
Class

N 2 0 1
H 2 14 9
L 0 13 18

Table 2: Best ternary confusion matrix
(GLVQ).

GRLVQ
Actual C.
N H L

Predicted
Class

N 1 1 0
H 0 21 4
L 0 13 19

Table 3: Best ternary confusion matrix
(GRLVQ).

Linear GLVQ
Actual Class

Normal Faulty

Predicted
Class

Normal 2 1
Faulty 2 54

Table 4: Best binary confusion matrix
(linear GLVQ).

GRLVQ
Actual Class

Normal Faulty

Predicted
Class

Normal 1 1
Faulty 0 57

Table 5: Best binary confusion matrix
(GRLVQ).

simpler prototype-based classifiers and get acceptable performances on the fault
classification task of interest. We succeeded in reporting high accuracy rates,
comparable to those achieved in previous works of our research group.

Currently, we are investigating the performances of kernelized versions of
LVQ classifiers on the same fault classification task. Our ultimate goal is to de-
velop an embedded software application capable of monitoring induction motors
in an online fashion with high accuracy rates.
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