Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/68988
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.advisor | Maia, José Gilvan Rodrigues | - |
dc.contributor.author | Farrapo, Hyuan Peixoto | - |
dc.date.accessioned | 2022-10-26T18:01:46Z | - |
dc.date.available | 2022-10-26T18:01:46Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | FARRAPO, Hyuan Peixoto. RocketDRL: a novel 3d environment for training reinforcement learning agents. 2021. 9 f. TCC (Graduação em Sistemas e Mídias Digitais) - Universidade Federal do Ceará, Fortaleza, 2021. | pt_BR |
dc.identifier.uri | http://www.repositorio.ufc.br/handle/riufc/68988 | - |
dc.description.abstract | The development of autonomous agents capable of presenting more human-like behavior is currently driven by Deep Reinforcement Learning techniques. Deep Reinforcement Learning is an active field of research that is fueled by virtual environments usually inspired or borrowed from video games. Several works in the field are limited to playing classical control tasks, 2D environments, or outdated games. Therefore, most environments used in research are significantly different from those available in current trending 3D games. This paper introduces RocketDRL, a novel Deep Reinforcement Learning environment which supports mechanics for 3D games inspired by the popular “car football” game Rocket League. Besides the classical gameplay, we implemented three challenging minigames based on the mechanics from this title with an advanced simulation of physics with fine-grained car control: penalty shoot, free kick, and aerial shoot. Moreover, we also provide promising baseline results using Unity’s ML-Agents Toolkit, which is an easy way to train and evaluate the agents. | pt_BR |
dc.language.iso | pt_BR | pt_BR |
dc.subject | Virtual environments | pt_BR |
dc.subject | Autonomous agents | pt_BR |
dc.subject | Reinforcement learning | pt_BR |
dc.subject | Simulation | pt_BR |
dc.title | RocketDRL: a novel 3d environment for training reinforcement learning agents | pt_BR |
dc.type | TCC | pt_BR |
dc.description.abstract-ptbr | O desenvolvimento de agentes autônomos capazes de apresentar um comportamento mais humano é atualmente impulsionado por técnicas de Deep Reinforcement Learning. Deep Reinforcement Learning é um campo de pesquisa ativo que é alimentado por ambientes virtuais geralmente inspirados ou emprestados de videogames. Vários trabalhos na área se limitam a jogar tarefas clássicas de controle, ambientes 2D ou jogos desatualizados. Portanto, a maioria dos ambientes usados na pesquisa são significativamente diferentes daqueles disponíveis nos jogos 3D atuais. Este artigo apresenta o RocketDRL, um novo ambiente de Deep Reinforcement Learning que suporta mecânicas para jogos 3D inspirados no popular jogo de “futebol de carros” Rocket League. Além da jogabilidade clássica, implementamos três minijogos desafiadores baseados na mecânica deste título com uma simulação avançada de física com controle de carro refinado: pênaltis, chute livre e tiro aéreo. Além disso, também fornecemos resultados de linha de base promissores usando o ML-Agents Toolkit da Unity, que é uma maneira fácil de treinar e avaliar os agentes. | pt_BR |
Aparece nas coleções: | SISTEMAS E MÍDIAS DIGITAIS - Artigos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2021_tcc_hpfarrapo.pdf | 2,67 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.