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ABSTRACT
The development of autonomous agents capable of presenting more
human-like behavior is currently driven by Deep Reinforcement
Learning techniques. Deep Reinforcement Learning is an active field
of research that is fueled by virtual environments usually inspired or
borrowed from video games. Several works in the field are limited to
playing classical control tasks, 2D environments, or outdated games.
Therefore, most environments used in research are significantly
different from those available in current trending 3D games. This
paper introduces RocketDRL, a novel Deep Reinforcement Learning
environment which supports mechanics for 3D games inspired by
the popular “car football” game Rocket League. Besides the classical
gameplay, we implemented three challenging minigames based
on the mechanics from this title with an advanced simulation of
physics with fine-grained car control: penalty shoot, free kick, and
aerial shoot. Moreover, we also provide promising baseline results
using Unity’s ML-Agents Toolkit, which is an easy way to train and
evaluate the agents.

CCS CONCEPTS
•Computingmethodologies→Computer vision; Intelligent
agents.

KEYWORDS
virtual environments, autonomous agents, reinforcement learning,
simulation

1 INTRODUCTION
In the history of virtual environments development, the search for
autonomous controlled behavior, that would mimic human-like
interactions in complex layers, is driving the industry for years
until this day [10]. This kind of agency can greatly improve the
relevance of evaluations within its dynamics. Even in environments
with simple mechanics, the uniqueness in the interactions between
pre-programmed entities and autonomous agents is valuable [1].

Although works on the field tend to train agents for common
control tasks [7] or even classical 2D games [12], in recent years,
we have seen advances in the development of autonomous agents
for 3D environments. At this moment, the works converged to use

Deep Reinforcement Learning (DRL), a technique that combines
classical Reinforcement Learning algorithms and the progress in
Deep Learning research [14]. Widely used in the construction of
autonomous robots [15], most DRL research uses digital games as
a benchmark environment [10].

One of the first video games to aim for unique complex interac-
tions through the environment was Pac-Man1, where the ghosts
had their own unique heuristic behaviors. With the adoption of
simple rules, this method created a challenging gameplay loop, im-
proving the player experience throughout the levels. As the games
were evolving, the variables through the mechanics and the envi-
ronments developed became richer and bigger. Thus, the traditional
scripted mode of implementing behaviors became harder.

With the progress in computational power, available for end-
users, the cost of developing, training, and evaluating Machine
Learning techniques decreased. It was in this context that DRL
arises, with the seminal work of [13]. At the time, creating an
autonomous agent capable of learning how to play Atari games by
only seeing the pixels of the screen was a big milestone. Since then,
DRL has emerged as an important research area.

This technique is being used with real-life situations, such as
automated driven systems [5], financial trade systems [21], and
recommendation systems [22]. However, the most common virtual
environments used to train the agents are video games. In this
case, the agent act as a player and has to learn suitable behaviors
accordingly. Therefore, we can have more immersive experiences,
with challenging rivals or more natural partners driven by artificial
intelligence.

In this way, a game that summarizes some real-life applications
and stimulates the dynamics of complex interactions is Rocket
League2. It presents a virtual 3D environment composed of a car
football match with advanced rules and skills that makes the player
deal with unusual tasks. These characteristics make Rocket League
a potential strong virtual environment for DRL development.

This work presents RocketDRL, a novel fully 3D environment
inspired by Rocket League and developed under Unity ML-Agents
[8]. RocketDRL allows single or multiple agents and presents all
of the basic mechanics from Rocket League. Besides the full game,
1https://pacman.com/en/
2https://www.rocketleague.com/
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we also created three minigames to enable agents’ training under
different complexities. The first minigame, called Penalty, expects
the agent to kick the ball inside the goal. The Free Kick minigame
puts a barrier between the player and the goal. Finally, the Aerial
minigame expects the player to shoot the ball in the air. RocketDRL
is an environment suitable for DRL training, capable of empowering
the agents to learn unusual behaviors in different tasks. A resume of
the interaction dynamics in the environment is showed in Figure 1.

This paper is organized as follows. In Section 2, we present a
brief description of Deep Reinforcement Learning and the methods
used in this work. In Section 3, we present works that use digital
games as a testbed for autonomous agents. In Section 4, we present
the RocketDRL environment, and its configurations. In Section 5,
we evaluate the proposed environment. Finally, in Section 6, we
present closing remarks and future works.

Figure 1: RocketDRL is a fully 3D environment developed
with Unity and the Unity Machine Learning Agents Toolkit,
featuring custom integration with DRL agents. The imple-
mented agent can performany of the actions available in the
environment, that get processed by the environment, pro-
viding new observations and rewards of the corresponding
action to the agent.

2 BACKGROUND
In this section we present a brief description of Reinforcement
Learning, its modern combination with Deep Learning, called Deep
Reinforcement Learning, and Proximal Policy Optimization, the
algorithm used to train the agents presented in this work.

2.1 Reinforcement Learning
.

Reinforcement Learning is a learning paradigm that deals with
learning through the interaction of an agent with the environment
[18]. Traditionally, for each timestep, 𝑡 , the environment presents
the current state observation, 𝑜𝑡 , to the agent, which executes one
action, 𝑎𝑡 , and receives a corresponding scalar signal, called re-
ward, 𝑟𝑡+1. The ultimate goal is to maximize the sum of discounted

rewards, 𝐺𝑡 , in which

𝐺𝑡 =

∞∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 , (1)

and 𝛾 , 0 ≤ 𝛾 < 1, is a discount factor to ensure that the above sum
always converges.

To achieve this goal, the agent has to learn the optimal proba-
bility distribution of actions for each observation. This probability
is called policy, 𝜋 , and defines the behavior of an agent. In some
cases, there is only one action with probability of 1.0 for each state,
which defines a deterministic policy. However, the most challeng-
ing problems are stochastic, which means that a policy returns a
probability of several possible actions.

One way to define the policy is computing the gradient of a
performance function, 𝐽 , with parameters 𝜃 , and update it using
gradient ascent. Intuitively, the performance function indicates if
the current policy is performing well. Formally, it can be defined
by the sum of the expected rewards by following the current policy,
such that

𝐽 (𝜃 ) = E𝜏∼𝜋𝜃 (𝜏)

[∑
𝑡

𝑅(𝜏)
]
, (2)

where 𝜏 is the trajectory, i.e., the sequence of observations and
actions followed by the agent, and 𝑅(𝜏) are the rewards received
by following this trajectory. Therefore, we can update the values of
𝜃 using

∇𝜃 𝐽 (𝜃 ) = E𝜏∼𝜋𝜃 (𝜏)

[
𝑇∑
𝑡=1

∇𝜃 log𝜋𝜃 (𝑎𝑡 | 𝑜𝑡 )𝑅(𝜏)
]
. (3)

When the observation space or action space grow, computing
the performance and its gradient becomes much harder.

2.2 Deep Reinforcement Learning
The first method of Deep Reinforcement Learning (DRL) was pre-
sented by [13] and effectively started a new research area. In the
paper, the authors presented a combination of Convolutional Neural
Networks and Q-Learning [20], a value-based Reinforcement Learn-
ing algorithm, which was capable of beating seven Atari games
receiving the raw pixels of the screen.

Most modern DRL methods are policy-based, i.e., they use policy
gradient algorithms to find the optimal policy. The gradients are
obtained from automatic differentiation, backpropagated through
the Deep Neural Network, then the weights, 𝜃 , are updated.

There are several methods of policy gradients in the literature.
In this work, we use Proximal Policy Optimization (PPO) [16]. It is
an algorithm already present in the ML-Agents toolkit, which facil-
itates the reproduction of our work. PPO uses both value functions
and policy loss to update the weights, using an advantage function,
𝐴𝜋 , in which

𝐴𝜋 (𝑎 | 𝑜) = 𝑄𝜋 (𝑎 | 𝑜) −𝑉𝜋 (𝑎 | 𝑜) , (4)

where
𝑄𝜋 (𝑎 | 𝑜) =

∑
𝑡

E𝜋𝜃 [𝑅(𝑎𝑡 | 𝑜𝑡 ) | 𝑜, 𝑎] (5)

and
𝑉𝜋 (𝑎 | 𝑜) =

∑
𝑡

E𝜋𝜃 [𝑅(𝑎𝑡 | 𝑜𝑡 ) | 𝑜] . (6)
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The loss function, 𝐿(𝜃 ), is defined such that PPO maximizes the
surrogate objective function

𝐿(𝜃 ) = Ê𝑡
[
min

(
𝑟𝑡 (𝜃 )𝐴𝑡 , 𝑐𝑙𝑖𝑝 (𝑟𝑡 (𝜃 ), 1 − 𝜀, 1 + 𝜀)𝐴𝑡

)]
, (7)

where Ê and 𝐴 are, respectively, the expectation and advantage
estimates obtained empirically, 𝑟 (𝜃 ) is the ratio

𝑟𝑡 (𝜃 ) =
𝜋𝜃 (𝑎𝑡 | 𝑜𝑡 )

𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 | 𝑜𝑡 )
, (8)

and the 𝑐𝑙𝑖𝑝 function limits the lower and upper values of 𝑟𝑡 (𝜃 ) to
1 − 𝜀 and 1 + 𝜀, respectively.

With the updated weights, the current observation is passed to
the Neural Network, which selects one of the possible actions. The
agent executes this action and receives a reward. This is the main
dynamic of agent interaction with the environment.

3 RELATEDWORKS
In this section, we describe three important DRL Toolkits, which
allow researchers to train and evaluate agents in several games. We
also present learning environments and discuss why Rocket League
is a good DRL task.

3.1 DRL Toolkits
There are many virtual environments available for research, in-
cluding games [11], the stock market [21], and physics simulations
[4]. Some of them are wrapped in a toolkit, that may contain more
environments and other development tools. Here, we present three
important DRL toolkits, chosen because of their relevance in the
research field.

3.1.1 Arcade Learning Environment. The Arcade Learning Envi-
ronment (ALE) [2] was one of the first sets of environments used
to train DRL agents. It was built using the Atari 2600 emulator
Stella, which allows the user to interact with the game, capture
the screen buffer, and share metadata, transforming each of its 60
games in a different RL task. However, since the Atari 2600 did not
have support for 3D games, ALE also does not allow training and
evaluating 3D agents.

3.1.2 OpenAI Gym. The OpenAI Gym [3] was presented as a set
of tools for building, customizing, and distributing environments
for Reinforcement Learning research. It includes a collection of
benchmark problems and also proposes a standard interface for
learning environments. It is highly focused on the environment
instead of the agent. One of the main features of Gym is that almost
any existing environment, whether 2D or 3D, can be adapted to
work according to Gym patterns through the use of a Python API.
By doing this, Gym allows for easy customization of environments
and comparison between different agents.

3.1.3 Unity Machine Learning Agents Toolkit (ML-Agents). Pre-
sented by Unity 3D, the Machine Learning Agents Toolkit (ML-
Agents) [8] provides an interface to train Reinforcement Learning
agents in the games and simulations built with the platform, essen-
tially making them Learning Environments. The researchers can
take advantage of a Python API to communicate with the engine,
allowing the implementation of agents using the standard Machine
Learning Python libraries, such as TensorFlow.

The toolkit has been made available with a set of pre-built Deep
Reinforcement Learning techniques and scenarios, making it easy
to quickly test environments and agents. Since Unity 3D is a very
popular free engine, used both in small projects and professional
games, and is also capable of working with 2D, 3D, Augmented, and
Virtual Reality applications, it was chosen as the main platform for
developing this work.

3.2 DRL Environments
As the interest in Reinforcement Learning researches grew, many
environments were developed [17], covering different game genres,
and were made public for use. The Google Research Football [10]
is a 3D environment that simulates a football video game. There
are environments focused on first-person shooter (FPS) games,
such as ViZDoom [9] and Deep Mind Lab [1]. Modern mainstream
games are also implemented as game environments for DRL agents
training, like MineRL [6], an environment on top of Minecraft, and
PySC2 [19], based on the Real-Time Strategy game StarCraft II.

Our work found RoboLeague 3 as starting inspiration, a Rocket
League clone proposed to work as a Reinforcement Learning Envi-
ronment, with some features like physics interactions and approxi-
mate visuals of the base game.

However Roboleague did not implement some key features of
Rocket League, such as essential car controls (like Double Jump,
and flipping the car), and base rules of the main game (like goal
detection, division by teams, timers). It also presents complex re-
utilization of developed components, resulting in a simplistic way
of using the ML-Agents toolkit, not reflecting the complex base
game behaviors.

Addressing these points, we deliver RocketDRL, a fully new 3D
environment, presenting the main key features of Rocket League,
with three minigames, ready to be used as a benchmark for Deep
Reinforcement Learning agents.

4 PROPOSED ENVIRONMENT
In this section, we describe the RocketDRL features, reward distri-
bution, observation format, actions, and minigames tasks.

4.1 Game Overview
Inspired by the mechanics of Rocket League, our game environ-
ment openly available4 presents a match of football, with cars as
participants. The players of the match are divided by teams (going
in the range of 1v1, 2v2 until 4v4), and have a total of five minutes
to play the game, which goes on a real-time scale. During the time
of the match, if someone scores a goal, the timer is paused, and the
players are reset to the default positions. The game restarts with a
score point being attributed to the team of the scoring player. After
time out, the team with the most score points is the winner.

The player controls the car, which model is presented in Figure 2.
The possible actions are to accelerate, turn the car, and do other
special controls, like jumping with the car, in which the player can
regulate the height of the jump according to the duration of the
input. If the user activates the input one more time, the car can
execute a double jump, which adds an impulse another time while

3https://github.com/roboserg/RoboLeague
4https://github.com/Hyuan02/RocketDRL
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in the air. In case the car is in the air, it is possible to skew the body
of the car and perform stunts, with pitch and row axis.

Figure 2: The carmodel used in the environment, in its front
and side view, inspired on Rocket League cars. The model
was originally made by RoboSerg.

It is also possible to use a special boost that adds a forward
impulse to the car, interfering with his acceleration. In the case of
the car being in the air, it adds an impulse on the car that makes it
possible to land more quickly, or to plane in the air by more time,
depending on the impulse direction.

The scale of elements in the game is more for fun, being the ball
bigger than the car. This causes a less complex interaction between
the player and the ball, with more ease to perform stunts and tricks
instigating the player to execute football movements with little
effort. The model of the ball 5 is presented in Figure 3.

Figure 3: The ball model used in the environment.

In the part of the physics simulation, aiming for a more arcade
gameplay, the environment behaves in a non-realistic manner, with
common world simulation values, like gravity, being different from
their real counterparts. The car and the ball have their own frictional
models, composed of rigid bodies. Moreover, the ball has a particular
way to react to bounces and collisions within the environment.

The game utilizes simple shapes in the collision models to im-
prove performance. The car is composed of an Oriented Bounded
Box (OBB) for the body and spherical shapes for the wheels. The
spherical mesh is utilized for the ball too. Furthermore, the stadium
has its own collision mesh.

Taking RoboLeague as a starting point, the implementation was
remade and improved for less coupling, easing the integration of
Unity ML-Agents into the agents of the game. The key assets, like
the car and stadium models, were also reused, making use of the
meshes for the graphics. For the agent mechanics, every core aspect
of the gameplaywas turned into a component, splitting key controls,
like the ground control of the car, the jump mechanic, boosting,
and stunting.

5https://www.cgtrader.com/free-3d-models/car/sport/free-3d-model-rocket-league-
ball

The properties of the car are managed by a wrapper and cen-
tralized in one component that stores physical properties, like the
forward velocity of the car and state data, like the car jumping
state and if it is boosting, making it easier to read. For the controls
aspects, an interface was implemented, increasing modularization,
dividing the inputs into signals that are utilized by the manager
and distributed for the components.

The physics behavior was implemented using Unity‘s default
system, with objects making use of native rigid bodies components
and their signals, and adjusting some global variables like gravity
for the whole simulation. The objects were composed of collision
and trigger shapes, splitting the responsibilities between interaction
functions and reaction behaviors. To receive these signals, custom
behaviors were implemented, like the ball’s friction model.

To maintain compatibility with different types of game rules,
the match logic was implemented deriving from a base class, in-
creasing code reuse. The main game flow was developed adding
core mechanics like the timer, team allocations, and scores, but
for simplified development, the scene is presented with only one
player, but it can be increased if needed.

The objects in the scene, like the ball and the car, have customized
parameters, starting with default values according to the Rocket
League reference values6. Parameters like the weight, friction, and
scale of objects can be customized utilizing Unity’s native compo-
nents, which modifies the mechanics of the environment. Abstract
parameters that influences directly the mechanics of the game can
also be customized, like the boost impulse or cost per second.

4.2 Reward Distribution
In the minigames routine, similar rewards were dfined because of
their general purposes. Being the main objective of the minigames
to score a goal, the agent receives a positive reward of 10 points
in case of success. To encourage the agent to perform the correct
actions fast, a negative reward of -0.01 was added at every step of
an episode. If the time of a minigame runs out or if the agent fails
to achieve the goal, it receives a negative reward of -10, which ends
the episode.

For the aerial minigame, an intermediate positive reward of 5
points is added if the agent does the entitled stunt while touching
the ball one time during the episode, being above 4 meters of the
ground. That reward was implemented after previous training with
non-satisfactory behaviors, in a form of encouraging the agent into
doing the advanced objective. After that, if it scores a goal, 10 points
are also given. The stunt in the aerial minigame is mandatory for
the agent to score the maximum reward.

4.3 Observations
For the state observations passed to the agent, we used a combina-
tion of data sensors, with normalized values of the importance of
the game environment, and 3D raycast sensors, that come natively
with the ML-Agents toolkit.

The sensors were implemented in an independent manner from
the start, taking key considerations from the game that are im-
portant for a human-based player, and then refined throughout

6https://github.com/RLBot/RLBot/wiki/Useful-Game-Values
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the training sessions, aiming to maximize the performance of the
autonomous agent. The specifications for the minigames are below.

4.3.1 General Data Sensors. For the general sensors used in the
three minigames, we have:

• boolean sensor, informing if the car is ready to drive or not.
• boolean sensor, informing if the body of the is on the ground
or not.

• integer sensor, informing how many wheels of the car are
on the ground.

• boolean sensor, informing if the car is jumping.
• float sensor, informing the boost quantity ready to use.
• boolean sensor, informing the car is using the boost or not.
• integer sensor, informing the direction of the car velocity
through the sign.

• float sensor, informing the speed of the car.
• float sensor, informing the steer angle of the car.
• 3D vector sensor, informing the rotation of the car on Euler
angles.

• 3D vector sensor, informing the related distance vector of
the car and the ball.

• 3D vector sensor, informing the related distance vector of
the ball and the goalpost.

4.3.2 Barrier Data Sensors. For the barrier minigame, we have one
specific data sensor:

• 3D vector sensor, informing the related distance between
the barrier and the ball.

4.3.3 Aerial Data Sensors. For the aerial minigame, we have three
specific data sensors:

• enumerator state sensor, informing the if the ball is frozen,
or in movement;

• boolean sensor, informing the aerial stunt was made;
• enumerator state sensor, informing the ball was touched, or
is waiting for game reset.

4.3.4 General Raycast Sensors. For a proper orientation and ad-
ditional data about the environment, we added a raycast sensor
(Figure 4 and Figure 5) component in the agent, that casts rays at a
maximum angle of 70 degrees in the front part of the car, detecting
the ball and also the barrier in the case of the barrier free kick
minigame. The rays have a reach of 40 units and are splitted in 8,
with a difference of 8.75 degrees each in the Y direction.

4.4 Actions
For the actions of the agent, we implemented an interface, sim-
ulating the input of player controls, like button presses and axis
handling, with discrete and continuous actions. The process of
request an action from the agent was made every 5 steps of the
episode. The agent was free to do actions between these intervals.

4.4.1 Continuous actions. There are two continuous actions:
• float action, varying -1 to 1, simulating the acceleration,
brake and rear input; and

• float action, varying -1 to 1, simulating the turning axis of
the car.

Figure 4: The rays casted from the native ML Agents compo-
nent integrated on the agent, viewed from the side, colliding
with the ball.

Figure 5: A top-down view of the rays casted through the
environment by the agent.

4.4.2 Discrete actions. There are three discrete actions:
• binary action, varying 0 to 1, simulating the jumping input;
• binary action, varying 0 to 1, simulating the boosting input;
and

• binary action, varying 0 to 1, simulating the drifting input.

4.5 Minigames Task Description
To escalate the process of training through the developed environ-
ment, we implemented three minigames that the agent has to utilize
the core mechanics of the game to achieve their goals.

The first one, is a classical of football games, based on the rules
of a penalty kick (Figure 6). The agent and the ball have a random
initial position on the Z-axis. After that, it marks the start of the
minigame, that the agent has to kick the ball to the preferred goal-
post. In case it scores a goal, the agent wins the round. If not, the
agent loses and scores nothing. The minigame repeats on cycles
after the result of the kick, going cumulative if the agent scores
more goals.

Barrier free kick (Figure 7) is the next minigame developed. Also
inspired by football games, its goal is to mark a score avoiding the
barrier in front of the goalpost. The car, the ball, and the barrier
position are randomized, and the barrier can be sometimes above
the ground, force the agent to do a low kick with the car.

Finally, we developed a harder minigame, stimulating the use
of an advanced technique learned by more experienced players (
Figure 8). It consists in making a goal by driving the car into the
air, and aim at the ball, which is dropped after three seconds of the
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start of the game, by using the steering commands into the air, the
agent adjusts the car to do the right effect that makes the ball go
towards into the goalpost. The name of this stunt is called Aerial.
The goal is only valid if the referred stunt is done.

Figure 6: A screenshot of the environment on the penalty
minigame, at the start of the episode.

Figure 7: A screenshot of the environment on the barrier
minigame, at the start of the episode.

Figure 8: A screenshot of the environment on the aerial
minigame, at the start of the episode.

5 EVALUATION
This section presents the experiments made to evaluate the use of
the environment as a Reinforcement Learning task. The behavior
of the agents when playing the minigames can be viewed in the
accompanying videos.

5.1 Unity ML-Agents
The ML-Agents toolkit features some DRL algorithms, that could
be integrated and adapted to the environment. The DRL algorithm
used for the training of the agents was PPO [16], chosen for being a
popular algorithm used for agent training of DRL tasks, and serving
for the accomplishment of validating the existence of a positive
learning rate throughout the training process. Utilizing this model,
it is possible to customize some hyperparameters, which are stored
in a configuration file used by the trainer. For each minigame, a
custom configuration file was written, where the parameters were
refined, tested in a portion of the training sessions, and in case of
promising results, used on the definitive session length. To facilitate
the reproduction of our experiments, we present the configuration
files used in Appendix A.

The models were trained with the use of concurrent instances
in the scenes. Since the proposition was to validate a learning rate
progress and present initial complex behaviors by autonomous
agents, aspects about the setup used or training performance were
not considered in the evaluation process. Below are presented the
fundamental parameters used to customize the trainer in the pro-
cess, beginning with the hyperparameters.

• batch size: Number of experiences that are collected before
a new iteration of the gradient descent. It does not have a
limit range, but the typical range in PPO varies from 512 to
5,120.

• buffer size: Number of experiences that are stored for the
process of learning and updating the policy model. While it
does not have a limit range, typically the PPO range used
varies from 2,048 to 409,600.

• learning rate: The coefficient that influences the model up-
date strength. The typical range varies in 0.00001 to 0.01.

• beta: Being a PPO-specific hyperparameter, it controls the
possibility of the agent taking random actions through the
environment, that with a greater value, it can lead to a bigger
exploration across the environment by the agent. The typical
range is 0.01 to 0.0001.

• epsilon: It controls the velocity of the policy updates during
training. The typical range is between 0.1 and 0.3.

• lambd: A coefficient that controls the dependency of the
agent on its previous values before updating to a new value.
The typical range is 0.9 to 0.95.

• num_epoch: Controls how the policy is updated, with how
many passes the gradient descent operation will do through
the experience buffer. The typical range is 3 to 10.

• learning_rate_schedule: Controls if the learning rate main-
tains its value over time or decreases linearly. It can have
two values: linear or constant.

It is possible to customize the network used in the training. For
this training, we used a simple model, with few layers and hidden
units. The customizable settings are described below.

• normalize: a boolean value that determines if the observation
inputs should be normalized in the training process. The
normalization is based on the running average and variance
of the values during the training process.
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• hidden units: The number of units on the hidden layers of
the neural network. Typically, it should be in the range of
32 to 512.

• num layers: Number of layers of neural network. Typically,
it varies from 1 to 3.

• vis encode type: Encoder type in case if visual observations
are used. It is possible to choose from 5 different imple-
mentations, varying from a default value, "simple" that is a
traditional implementation using two convolutional layers,
or the resnet implementation, which is a complex network
consisting of three stacked layers.

The parameters for reward signals were based on values of refer-
ences of default examples of the ML-Agents toolkit. It is possible to
choose the type of reward: intrinsic (with custom implementations
like RND or Curiosity) or extrinsic. On the extrinsic implementation,
it is possible to customize some parameters like:

• gamma: A downsampling factor for future rewards into the
environment. The default range for this parameter is 0.8 to
0.995.

• strength: A multiplier factor for the rewards received by the
environment. It is common to use a neutral value, like 1.

There are some general parameters of the trainer that need to be
configured too:

• max steps: Parameter that measures a length of a training.
A typical range for this parameter is between 500,000 and
10,000,000.

• time horizon: Defines the number of steps that are collected
to be added to the experience buffer. The typical range is
from 32 to 2048.

5.2 Results
In this subsection, we present the results of training the PPO con-
figured agent, through the three minigames developed, and explain
the performance and the behavior of the agent through the games.

5.2.1 Penalty. In this minigame, that the agent has to shoot the
ball to the goalpost with no obstacles, the results were optimal, and
after 30 million steps, the model converged with the agent hitting
almost the totality of the shoots through the goal, achieving a very
precise performance. An image with the results is shown below
(Figure 9).

Figure 9: The reward coefficient results of the penalty train-
ing.

5.2.2 Barrier. In this minigame, the agent has to kick the ball to the
goalpost as before, but with a barrier between them, that appears at
different positions every episode. The results in this minigame had
moderate performance, with the agent achieving great precision
when the barrier had a higher height and a mediocre precision
when the barrier had a smaller height. The model converged to this
performance after 50 million steps (Figure 10).

Figure 10: The reward coefficient results of the barrier train-
ing.

5.2.3 Aerial. The aerial minigame is an advanced minigame, made
to test the performance of the agent, on executing complex skills,
in which the agent only has valid goals, when is did an advanced
air stunt, that touches the ball in the air, and it scores after. In this
situation, the agent had a poor performance, understanding the
objective, but with a very small amount of successful episodes. The
agent was trained with 120 million steps, hitting its convergence
(Figure 11).

Figure 11: The reward coefficient results of the aerial train-
ing.

6 CONCLUSION
In this work, we introduce RocketDRL, a novel 3D learning environ-
ment inspired by Rocket League. The purpose of the project was to
develop a deeply customized “car football” environment that allows
for an intuitive process of development, training, and evaluation of
Deep Reinforcement Learning agents. RocketDRL aims to increase
the list of available environments to make agents learn complex
immersive behaviors focused on a modern mainstream game.

To expand the learning possibilities, RocketDRL features three
minigames designed to challenge the agents in the virtual 3D envi-
ronment. To validate the possibilities of use for learning purposes,
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we trained baseline agents, showing initial results and rich possibil-
ities to achieve through the process of implementing autonomous
agents. The agent trained to play the Penalty minigame learned
the optimal behavior quickly. The other agents, although strug-
gled to achieve optimal behavior, showed increasing performance.
This indicates that RocketDRL is a suitable environment for the
development of Deep Reinforcement Learning agents.

As future work, new minigames would expand the catalog of
challenges, increasing the possibilities of evaluation in RocketDRL.
Moreover, in this work, we used the baseline PPO agent present
in ML-Agents, which is enough to validate RocketDRL as an ad-
equate environment. However, other agents could be developed
and evaluated in RocketDRL to be able of obtaining a satisfactory
performance in all minigames.
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A CONFIGURATION FILES
A.1 Penalty Kick Minigame
The settings used in the penalty kick minigame are presented in
Figure 12.

behaviors: 
  Penalty: 
    trainer_type: ppo 
    hyperparameters: 
      batch_size: 1024 
      buffer_size: 204800 
      learning_rate: 0.001 
      beta: 0.001 
      epsilon: 0.2 
      lambd: 0.95 
      num_epoch: 3 
      learning_rate_schedule: linear 
    network_settings: 
      normalize: true 
      hidden_units: 128 
      num_layers: 2 
      vis_encode_type: simple 
    reward_signals: 
      extrinsic: 
        gamma: 0.99 
        strength: 1.0 
    keep_checkpoints: 3 
    max_steps: 30000000 
    time_horizon: 1024 
    summary_freq: 50000 

Figure 12: Configurations used in the penalty minigame.
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A.2 Barrier Free Kick Minigame
The settings used in the barrier free kick minigame are presented
in Figure 13.

behaviors: 
  Barrier: 
    trainer_type: ppo 
    hyperparameters: 
      batch_size: 1024 
      buffer_size: 204800 
      learning_rate: 0.0001 
      beta: 0.0001 
      epsilon: 0.1 
      lambd: 0.99 
      num_epoch: 3 
      learning_rate_schedule: constant 
    network_settings: 
      normalize: true 
      hidden_units: 128 
      num_layers: 2 
      vis_encode_type: simple 
    reward_signals: 
      extrinsic: 
        gamma: 0.99 
        strength: 1.0 
    keep_checkpoints: 5 
    max_steps: 150000000 
    time_horizon: 1024 
    summary_freq: 100000 

Figure 13: Configurations used in the barrier minigame.

A.3 Aerial Shoot Minigame
The settings used in the aerial minigame are presented in Figure 14.

behaviors: 
  Aerial: 
    trainer_type: ppo 
    hyperparameters: 
      batch_size: 3200 
      buffer_size: 400000 
      learning_rate: 0.001 
      beta: 0.001 
      epsilon: 0.28 
      lambd: 0.93 
      num_epoch: 8 
      learning_rate_schedule: linear 
    network_settings: 
      normalize: true 
      hidden_units: 128 
      num_layers: 2 
      vis_encode_type: simple 
    reward_signals: 
      extrinsic: 
        gamma: 0.99 
        strength: 1.0 
    keep_checkpoints: 5 
    max_steps: 120000000 
    time_horizon: 1000 
    summary_freq: 12000 
    threaded: true 

Figure 14: Configurations used in the aerial minigame.
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