Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/67196
Tipo: Artigo de Periódico
Título : A deformed exponential statistical manifold
Autor : Vieira, Francisca Leidmar Josué
Andrade, Luiza Helena Félix de
Vigelis, Rui Facundo
Cavalcante, Charles Casimiro
Palabras clave : Deformed exponential manifold;Statistical manifold;Information geometry;Exponential arcs;φ-Family
Fecha de publicación : 2019
Editorial : Entropy
Citación : CAVALCANTE, C. C. et al. A deformed exponential statistical manifold. Entropy, vol. 21, n. 5, p. 496, 2019
Abstract: Consider μ a probability measure and Pμ the set of μ -equivalent strictly positive probability densities. To endow Pμ with a structure of a C∞ -Banach manifold we use the φ -connection by an open arc, where φ is a deformed exponential function which assumes zero until a certain point and from then on is strictly increasing. This deformed exponential function has as particular cases the q-deformed exponential and κ -exponential functions. Moreover, we find the tangent space of Pμ at a point p, and as a consequence the tangent bundle of Pμ . We define a divergence using the q-exponential function and we prove that this divergence is related to the q-divergence already known from the literature. We also show that q-exponential and κ -exponential functions can be used to generalize of Rényi divergence.
URI : http://www.repositorio.ufc.br/handle/riufc/67196
ISSN : 1099-4300
Aparece en las colecciones: DETE - Artigos publicados em revista científica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2019_art_cccavalcante.pdf348,42 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.