Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/67196
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorVieira, Francisca Leidmar Josué-
dc.contributor.authorAndrade, Luiza Helena Félix de-
dc.contributor.authorVigelis, Rui Facundo-
dc.contributor.authorCavalcante, Charles Casimiro-
dc.date.accessioned2022-07-18T18:50:36Z-
dc.date.available2022-07-18T18:50:36Z-
dc.date.issued2019-
dc.identifier.citationCAVALCANTE, C. C. et al. A deformed exponential statistical manifold. Entropy, vol. 21, n. 5, p. 496, 2019pt_BR
dc.identifier.issn1099-4300-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/67196-
dc.description.abstractConsider μ a probability measure and Pμ the set of μ -equivalent strictly positive probability densities. To endow Pμ with a structure of a C∞ -Banach manifold we use the φ -connection by an open arc, where φ is a deformed exponential function which assumes zero until a certain point and from then on is strictly increasing. This deformed exponential function has as particular cases the q-deformed exponential and κ -exponential functions. Moreover, we find the tangent space of Pμ at a point p, and as a consequence the tangent bundle of Pμ . We define a divergence using the q-exponential function and we prove that this divergence is related to the q-divergence already known from the literature. We also show that q-exponential and κ -exponential functions can be used to generalize of Rényi divergence.pt_BR
dc.language.isoenpt_BR
dc.publisherEntropypt_BR
dc.subjectDeformed exponential manifoldpt_BR
dc.subjectStatistical manifoldpt_BR
dc.subjectInformation geometrypt_BR
dc.subjectExponential arcspt_BR
dc.subjectφ-Familypt_BR
dc.titleA deformed exponential statistical manifoldpt_BR
dc.typeArtigo de Periódicopt_BR
Aparece nas coleções:DETE - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2019_art_cccavalcante.pdf348,42 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.