Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/67015
Tipo: Artigo de Periódico
Título : Aplicação da clusterização por K-means para criação de sistema de recomendação de produtos baseado em perfis de compra
Título en inglés: Applying K-means clustering to create product recommendation system based on purchase profile
Autor : Santana, Roniel Venâncio Alencar
Pontes, Heráclito Lopes Jaguaribe
Palabras clave : Sistemas de recomendação;Ciência de dados;Machine learning;Clusterização;Buziness intelligence
Fecha de publicación : 2020
Editorial : Navus
Citación : PONTES, H. L. J.; SANTANA, R. V. A. Aplicação da clusterização por K-means para criação de sistema de recomendação de produtos baseado em perfis de compra. Navus, v. 10, p. 1-14, 2020
Resumen en portugués brasileño: O uso de modelos preditivos de machine learning para big data se faz hoje uma das principais tendências a serem exploradas pela ciência de dados. Sua aplicação ao mundo dos negócios na busca por um diferencial competitivo se relaciona diretamente com o Business Intelligence para que assim as empresas passem a tomar decisões mais assertivas. Com isso, o presente artigo propõe-se a aplicar uma técnica de machine learning para a criação de um sistema de recomendação de produtos com base no perfil de compra dos clientes a partir da modelagem em uma empresa distribuidora de produtos. Para tanto foi utilizado o algoritmo de clusterização K-means para realização de agrupamentos dos clientes com base em seu perfil de compra. Por fim, o princípio de funcionamento do sistema de recomendação baseia-se na análise comparativa entre clientes de um mesmo cluster com base em suas distâncias geográficas para assim recomendar aquele item que vende bem em um estabelecimento, mas que não tem o mesmo desempenho em outro. Ao final da aplicação do sistema de recomendação de produtos foram gerados um total de 70 clusters para toda a gama de clientes da empresa foco do estudo. Cada cliente de cada cluster recebeu uma lista contendo 5 produtos recomendados com base na comparação realizada com seus vizinhos próximos de perfil de compra similar.
Abstract: The use of predictive machine learning models for big data is today one of the main trends to be explored by data science. Its application to the business world for a search of competitive differential is directly related to Business Intelligence so companies can make more assertive decisions. Thus, this paper proposes to apply a machine learning technique to create a product recommendation system based on customers' purchase profile, modeled for a product distribution company. For this purpose, the K-means clustering algorithm was used to group customers based on their purchase profile. Finally, the recommendation system's principle is based on a comparative analysis between customers in the same cluster and based on their geographic distances to recommend that item that sells well in one point of sales but does not perform so well in another. At the end of the application 70 clusters were generated for the entire range of customers of the company focused in the present study. Each customer in each cluster received a list containing 5 recommended products based on the comparison made with their close neighbors of similar buying profile.
URI : http://www.repositorio.ufc.br/handle/riufc/67015
ISSN : 2237-4558
Aparece en las colecciones: DEPR - Artigos publicados em revistas científicas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2020_art_hljpontes.pdf4,21 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.