Please use this identifier to cite or link to this item: http://repositorio.ufc.br/handle/riufc/63782
Type: Tese
Title: Scheduling for Massive MIMO with Hybrid Precoding Based on Optimization and Contextual Multi-armed Bandits
Authors: Mauricio, Weskley Vinicius Fernandes
Advisor: Maciel, Tarcísio Ferreira
Co-advisor: Lima, Francisco Rafael Marques
Keywords: MIMO massivo;RRA;QoS;Equidade;CMAB
Issue Date: 2021
Citation: MAURICIO, Weskley Vinicius Fernandes. Scheduling for Massive MIMO with hybrid precoding based on optimization and contextual multiarmed bandits. 2021. 101f. Tese (Doutorado em Engenharia de Teleinformática) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia de Teleinformática, Fortaleza, 2021.
Abstract in Brazilian Portuguese: Nesta tese, estudamos os problemas de RRA (do inglês, radio resource allo- cation) em sistemas de quinta geração (5G) que utilizam a tecnologia MIMO (do inglês, multiple-input multiple-output) massivo. Focamos em resolver os pro- blemas de otimização de desempenho (maximização da taxa de dados) dos sistemas MIMO massivo sujeitos a garantias de QoS (do inglês, quality of ser- vice). Contudo, estes problemas são extremamente difíceis em MIMO massivo, principalmente quando levamos em consideração os desafios práticos, dos quais podemos citar a limitação no número de cadeias de Rádio-Frequência (RF), precodificação híbrida e estimação de canal. Nesta tese aplicamos otimiza- ção numérica e CMABs (CMABs, do inglês contextual multi-armed bandits) para solucionar problemas de RRA. Também, esta tese é dividida em duas partes. A primeira parte tem por objetivo utilizar otimização para resolver os problemas de maximização de taxa de dados considerando cenários com e sem requisitos de QoS. Nesta parte, propomos um arcabouço para solução do problema com- posto de três passos - clusterização, agrupamento, e escalonamento. No passo da clusterização, criamos clusters de UEs (do inglês, user equipment) espaci- almente compatíveis. No passo do agrupamento, selecionamos um conjunto de grupos SDMA (do inglês, space-division multiple access) de cada cluster. No passo do escalonamento, utilizamos estes grupos SDMA como candidatos para receber RBs (do inglês, resource blocks) com o objetivo de resolver um problema de RRA pré-definido. Nós propomos soluções ótimas e sub-ótimas para resolver os passos de agrupamento e escalonamento. As soluções propostas apresenta- ram um bom custo-benefício de desempenho em relação às soluções ótimas de alta complexidade e às soluções de referência. Na segunda parte, propomos um arcabouço utilizando CMAB dinamicamente adaptável para resolver três problemas de RRA: i) maximização da taxa de dados; ii) maximização da taxa de dados com garantias de justiça, e; iii) maximização da taxa de dados com garantias de QoS, que são problemas relevantes na área de comunicações sem fio. Nesta parte, utilizamos a clusterização e a precodificação híbrida para reduzir a complexidade do escalonamento considerando cada cluster como um agente de escalonamento CMAB virtual independente. Após isso, aplicamos um novo escalonador baseado em CMAB com objetivo de otimizar o desempenho desejado. Resultados de simulação mostram que o arcabouço proposto apre- senta um bom custo-benefício de desempenho em termos de taxa de dados, justiça e QoS em relação às soluções de referência.
Abstract: In this thesis, we study radio resource allocation (RRA) problems in fifth genera- tion (5G) systems with massive multiple-input multiple-output (MIMO) technol- ogy. We focus on optimizing the system performance (data rate maximization) of massive MIMO systems subject to quality of service (QoS) guarantees. However, these problems are extremely difficult to solve in massive MIMO, especially when practical challenges are taken into account, such as the need of a large number radio frequency (RF) chains, hybrid precoding and channel estima- tion. In order to solve the studied RRA problems in this thesis, we use as main tools optimization and contextual multi-armed bandits (CMAB). Also, this thesis is divided into two parts. The first part utilizes optimization to solve the problems of maximizing the data rate with and without considering QoS requirements. In this part, we propose a framework composed of three steps: clusterization, grouping, and scheduling. In the clusterization step, we create cluster of spatially compatible user equipments (UEs). In the grouping step, we select a set of space division multiple access (SDMA) groups from each cluster. In the scheduling step, we utilize these SDMA groups as candidates to receive resource blocks (RBs) aiming at solving a predefined RRA problem. We propose optimum and suboptimum solutions to solve the grouping and scheduling steps. The low-complexity proposed solutions present a good performance trade-off in relation to the highly complex optimal solutions and reference solutions. In the second part, we propose a framework utilizing dynamically adaptable CMAB to solve three RRA problems: i) data rate maximization; ii) data rate maximization with fairness guarantees, and; iii) data rate maximization with QoS guarantees, which are relevant problems in wireless communications. In this part, we utilize the clusterization and hybrid precoding to reduce the scheduling problem complexity by considering each cluster as an independent virtual CMAB scheduling agent. Next, we apply a new CMAB-based scheduler aiming to optimize the desired system performance metric. The solution for each problem utilizing our proposed framework is evaluated separately with UEs moving at different speeds. Simulation results showed that the proposed framework presents a good performance trade-off in data rate, fairness, and QoS in relation to the reference solutions.
URI: http://www.repositorio.ufc.br/handle/riufc/63782
Appears in Collections:DETE - Teses defendidas na UFC

Files in This Item:
File Description SizeFormat 
2021_tese_wvfmauricio.pdf2,14 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.