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Resumo
Nesta tese, estudamos os problemas de RRA (do inglês, radio resource allo-
cation) em sistemas de quinta geração (5G) que utilizam a tecnologia MIMO

(do inglês, multiple-input multiple-output) massivo. Focamos em resolver os pro-

blemas de otimização de desempenho (maximização da taxa de dados) dos

sistemas MIMO massivo sujeitos a garantias de QoS (do inglês, quality of ser-
vice). Contudo, estes problemas são extremamente difíceis em MIMO massivo,

principalmente quando levamos em consideração os desafios práticos, dos

quais podemos citar a limitação no número de cadeias de Rádio-Frequência

(RF), precodificação híbrida e estimação de canal. Nesta tese aplicamos otimiza-

ção numérica e CMABs (CMABs, do inglês contextual multi-armed bandits) para

solucionar problemas de RRA. Também, esta tese é dividida em duas partes. A

primeira parte tem por objetivo utilizar otimização para resolver os problemas

de maximização de taxa de dados considerando cenários com e sem requisitos

de QoS. Nesta parte, propomos um arcabouço para solução do problema com-

posto de três passos - clusterização, agrupamento, e escalonamento. No passo

da clusterização, criamos clusters de UEs (do inglês, user equipment) espaci-

almente compatíveis. No passo do agrupamento, selecionamos um conjunto

de grupos SDMA (do inglês, space-division multiple access) de cada cluster. No

passo do escalonamento, utilizamos estes grupos SDMA como candidatos para

receber RBs (do inglês, resource blocks) com o objetivo de resolver um problema

de RRA pré-definido. Nós propomos soluções ótimas e sub-ótimas para resolver

os passos de agrupamento e escalonamento. As soluções propostas apresenta-

ram um bom custo-benefício de desempenho em relação às soluções ótimas de

alta complexidade e às soluções de referência. Na segunda parte, propomos

um arcabouço utilizando CMAB dinamicamente adaptável para resolver três

problemas de RRA: i) maximização da taxa de dados; ii) maximização da taxa

de dados com garantias de justiça, e; iii) maximização da taxa de dados com

garantias de QoS, que são problemas relevantes na área de comunicações

sem fio. Nesta parte, utilizamos a clusterização e a precodificação híbrida para

reduzir a complexidade do escalonamento considerando cada cluster como um

agente de escalonamento CMAB virtual independente. Após isso, aplicamos um

novo escalonador baseado em CMAB com objetivo de otimizar o desempenho

desejado. Resultados de simulação mostram que o arcabouço proposto apre-

senta um bom custo-benefício de desempenho em termos de taxa de dados,

justiça e QoS em relação às soluções de referência.

Palavras-chave: MIMO massivo, RRA, QoS, Equidade, CMAB.



Abstract

In this thesis, we study radio resource allocation (RRA) problems in fifth genera-

tion (5G) systems with massive multiple-input multiple-output (MIMO) technol-

ogy. We focus on optimizing the system performance (data rate maximization) of

massive MIMO systems subject to quality of service (QoS) guarantees. However,

these problems are extremely difficult to solve in massive MIMO, especially

when practical challenges are taken into account, such as the need of a large

number radio frequency (RF) chains, hybrid precoding and channel estima-

tion. In order to solve the studied RRA problems in this thesis, we use as

main tools optimization and contextual multi-armed bandits (CMAB). Also, this

thesis is divided into two parts. The first part utilizes optimization to solve

the problems of maximizing the data rate with and without considering QoS

requirements. In this part, we propose a framework composed of three steps:

clusterization, grouping, and scheduling. In the clusterization step, we create

cluster of spatially compatible user equipments (UEs). In the grouping step, we

select a set of space division multiple access (SDMA) groups from each cluster.

In the scheduling step, we utilize these SDMA groups as candidates to receive

resource blocks (RBs) aiming at solving a predefined RRA problem. We propose

optimum and suboptimum solutions to solve the grouping and scheduling

steps. The low-complexity proposed solutions present a good performance

trade-off in relation to the highly complex optimal solutions and reference

solutions. In the second part, we propose a framework utilizing dynamically

adaptable CMAB to solve three RRA problems: i) data rate maximization; ii) data

rate maximization with fairness guarantees, and; iii) data rate maximization

with QoS guarantees, which are relevant problems in wireless communications.

In this part, we utilize the clusterization and hybrid precoding to reduce the

scheduling problem complexity by considering each cluster as an independent

virtual CMAB scheduling agent. Next, we apply a new CMAB-based scheduler

aiming to optimize the desired system performance metric. The solution for

each problem utilizing our proposed framework is evaluated separately with

UEs moving at different speeds. Simulation results showed that the proposed

framework presents a good performance trade-off in data rate, fairness, and

QoS in relation to the reference solutions.

Keywords: Massive MIMO, RRA, QoS, Fairness, CMAB.
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Chapter 1
Introduction

Over the last decades, mobile communications experienced an incredible

development moving from the analog voice-only first generation (1G) of cellular

systems to the commercial deployment of fifth generation (5G) networks in

2019 [1]. Some of the requirements that 5G is designed to support are [2]–[5]:

• Massive connectivity - Massive number of connected devices supporting

internet of things (IoT) and machine-to-machine (M2M) communications.

• Higher data rates - Devices achieving data rates 10 to 100 times higher

than in fourth generation (4G).

• Lower latency - End-to-end latency reaching 1 millisecond, supporting

real-time processing and transmission.

• Energy efficiency - Increased energy saving and battery lifetime with gains

of 10-fold over 4G networks. Also, it is expected to achieve an energy

efficiency of 0.01 J/bit.

• Flexibility - Supports the coexistence of different radio access network

(RAN) technologies.

Therefore, 5G has the challenge to achieve higher data rates and lower

latency, not exceeding 4G costs, while perfectly supporting heterogeneous

networks. In order to achieve these requirements, new technologies have been

studied in the past few years, and several 4G technologies have been improved

to address 5G challenges. Among them we mention:

• Massive multiple-input multiple-output (MIMO) - It is a key technology

capable of meeting the data rate requirements of 5G systems [6], [7].



Chapter 1. Introduction 21

This technology allows the base station (BS) to be equipped with tens to

hundreds of antennas, enabling them to create many narrow beams to

serve multiple user equipments (UEs) at the same resource block (RB),

thus increasing spatial reuse and spectral efficiency [8], [9].

• Millimiter wave (mmWave) - Free microwave spectrum is scarce since

this band has been used by the past cellular generations. Therefore, 5G

should rely on new bands to meet the strict requirements mentioned above.

mmWave provides large bandwidth, making it possible to achieve the high

data rate requirements of 5G systems [10], [11]. Therefore, its availability

and large bandwidth make it a key technology for 5G systems [3].

• Network slicing - It is a common physical or virtual network that sup-

ports different end-to-end (E2E) logical networks, known as slices. These

slices can be created on demand and can be controlled/managed indepen-

dently of each other. Also, it reduces the hardware cost of 5G by allowing

the support of different RANs. Therefore, its flexibility makes it a key

technology of 5G networks [12].

This thesis focuses on massive MIMO and mmWave technologies since they

solve many technical challenges of 5G networks. Despite the benefits of those

technologies, each one of them has its own challenges. In the next section,

we detail the technologies considered in this thesis, as well as their benefits

and challenges. In general, the application of those technologies is expected to

make 5G support three general types of use cases [2], [13]:

• Enhanced mobile broadband (eMBB) - In this use case 5G networks are

capable of fulfilling the quality of service (QoS) of data-hungry UEs by de-

livering data rates 10 to 100 times higher than in 4G. It will support higher

UE mobility, enabling broadband access in vehicles, such as cars, trains,

and planes. Also, it provides enhanced connectivity, making broadband

access available everywhere, which creates the concept of ultra-dense

networks. From the aforementioned technologies, we highlight mmWave

and massive MIMO as promising to achieve this service requirement.

• Massive machine-type communication (mMTC) - This use case will

provide connectivity solutions for a massive number of devices, such as

weather and medical sensors, machines, and so on. Therefore, from the

aforementioned technologies, we highlight massive MIMO as a promising

technology to achieve this service requirement.
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• Ultra-reliable and low latency communication (URLLC) - This use case

will support services with extreme requirements on reliability, availability,

and low latency, such as health care, smart city, and self-driving cars.

From the aforementioned technologies, we highlight network slicing as a

promising technology to achieve these service requirements.

Figure 1.1 shows the general type of use cases and some services provided

by them.

Figure 1.1 – 5G use cases.

Source: ITU-R IMT 2020 requirements [14].

1.1 Background

1.1.1 Massive MIMO

MIMO is a multiplexing technique that provides the spatial dimension as a

new resource for wireless communication. The combination of this additional

spatial dimension and multiplexing techniques allows the transmission of

several data streams, which increases the system data rate. As mentioned

before, massive MIMO for 5G differs from the conventional MIMO used on 4G

by the very large number of antennas at each BS [15]. The higher number of

antenna elements and, therefore, spatial streams, leads to an increase in the

data rate and number of served UEs. This increase in data streams fits very

well in the new 5G systems, where a massive number of connected devices and

the use of data hungry applications are expected. Figure 1.2 shows a multiuser
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massive MIMO system with UEs using different kinds of services and being

served by the BS with a massive number of antennas in the same RB.

Figure 1.2 – Example of a multiuser massive MIMO System.

Source: Created by the author.

Another benefit of massive MIMO is the channel hardening effect [16], [17].

Due to the channel hardening, the randomness of wireless communications

can become negligible, i.e., the channel can behave almost deterministically.

This effect makes itself present by the deployment of many antennas, which

minimizes the small-scale fading problem, leaving to be handled only the large-

scale fading problem. The small-scale fading is one of the major issues in

wireless communications. This effect may simplify the radio resource allocation

(RRA), channel estimation, and other wireless communications procedures.

We highlight here that this thesis focuses on massive MIMO considering

frequency division duplexing (FDD). Therefore, despite the benefits of massive

MIMO, there are some issues [18]:

• Large amount of required radio frequency (RF) chains - In conven-

tional MIMO, there is one RF chain per antenna element. Important to

notice that an RF chain is a circuit composed of analog/digital converters,

mixers, and power amplifiers. These circuits tend to be costly in high

frequencies. Also, the number of RF chains at the BS determines the max-

imum number of supported streams. Therefore, the usage of the classical

fully-digital precoding in massive MIMO is impractical since it needs as

many RF chains as antennas, which results in unsustainable costs and

power consumption [18], [19]. However, [20] says that hybrid beamform-

ing will be replaced by digital beamforming in a few years, leading the
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hybrid beamforming studies to take other directions in the future such as

satellite communications.

• Feed back channel - In massive MIMO based on FDD, the UEs perform

the channel estimation by reporting the channel state information (CSI)

to the BS. However, the amount of information that each UE needs to feed

back increases largely with the number of antennas, which can easily

cause an overhead at the feedback channel since it is limited. Considering

that this problem affects the available information at the BS, the precoder

design is also affected [18], [19].

One way to counteract these issues is to split precoding into analog and

digital domains, an approach also known as hybrid precoding [18], [19], [21].

1.1.2 Hybrid Precoding

Hybrid precoding is a two-stage precoding scheme that splits the beam-

forming between analog and digital domains, and which leads to employ less

RF chains than transmit antennas. Therefore, this scheme allows the use of

massive MIMO by using a small number of RF chains, which reduces the

system design complexity and energy consumption. Otherwise, massive MIMO

has prohibitive power consumption and cost. Also, this scheme provides great

reduction in the CSI feedback [18].

There are two main architectures for hybrid precoding, which differ in the

signal mapping of RF chains and transmit antennas [22]. The first one is

called fully-connected hybrid precoding, where all transmitting antennas are

connected to each RF chain, as illustrated in Figure 1.3a. Therefore, each RF

chain uses the phase shifters to send signals to all transmitting antennas. This

architecture fully exploits the precoding gain that can be obtained by each RF

chain. The second one is called partially-connected hybrid precoding, where

each RF chain is connected to a subset of transmitting antennas, as illustrated

in Figure 1.3b. Therefore, each RF chain uses the phase shifters to send signals

only to a reduced number of transmitting antennas. This architecture reduces

the hardware complexity at the cost of losing beamforming gain. Therefore,

there is a trade-off between these two structures, which has to be carefully

taken into account in the implementation of hybrid precoding massive MIMO

systems. In this thesis we consider that our system uses the fully-connected

architecture.

The massive MIMO with hybrid precoding architecture brings several chal-

lenges, such as the joint optimization of analog and digital precoding, which
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Figure 1.3 – Hybrid precoding architectures

RF
Chain

RF
Chain

(a) Hybrid precoding fully connected.

RF
Chain

RF
Chain

(b) Hybrid precoding partially connected.

Source: Created by the author.

leads to non-convex optimization problems. Moreover, phase shifters and other

elements can be used to implement the analog precoder, which imposes addi-

tional constraints in the precoding design.

1.1.3 Radio Resource Allocation

RRA manages the available radio resources among the UEs in the system.

In single input single output (SISO) wireless systems, the available resources

can be frequency, transmit power, and time slots. In MIMO wireless systems,

the use of beams adds the spatial resource dimension to the existing ones [23].

In particular, the RRA algorithms that manage the spatial resources are called

space division multiple access (SDMA) schemes. SDMA solutions exploit the

spatial compatibility among different UEs, placing UEs whose channels are

nearly orthogonal in the same group and if the algorithm succeeds in grouping

the users, increases the system spectral efficiency (SE) [24], [25]. In general,

those resources need smart management, otherwise, they will negatively impact

system performance. Also, managing these resources in the MIMO scenario

leads to solutions with high computational complexity [26].

The way in which the SDMA groups are formed affects directly the precoding

capability to reduce the interference among UEs. The characteristics of the

selected UEs’ channels dictate the performance achieved by the precoder,

i.e., forming spatially compatible SDMA groups is fundamental to help the

precoders to guarantee the best attainable signal to interference-plus-noise

ratio (SINR).

The main drawback in SDMA problems is the number of possible groups

that can be created [27]. Usually, the exhaustive search for the best groups is

prohibitive. Over the years, two approaches for the SDMA grouping problem

stood out:
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• Classical iterative SDMA grouping approach - UEs are placed in the

SDMA group in a sequential manner based on some spatial compatibility

metric [24], [28].

• Clustering before scheduling - spatially correlated UEs are divided into

clusters before being scheduled into an SDMA group [29], [30].

We highlight mathematical optimization as a key tool to handle the RRA

problems. This tool provides a general framework to determine a possible

solution (in many cases, the optimal one) to a well-defined problem. Optimiza-

tion problems are expressed in terms of variables, objective function, and

constraints [31].

Moreover, the large dimensionality of multi-user massive MIMO systems, on

its own, drastically increases RRA complexity and, when combined with the

stringent target requirements of 5G, RRA problems become even more difficult

to be solved. Also, RRA in massive MIMO systems is challenging due to the

inherent non-orthogonality among UEs, which can lead to high multi-user

interference and affects the system performance negatively. Another challenge

is that the problem is combinatorial and the number of scheduling possibilities

grows exponentially with the number of UEs and available RF chains [32].

Therefore, the development of new RRA algorithms is particularly challenging

in those scenarios [33], [34].

1.1.4 Reinforcement Learning

Reinforcement learning (RL) is a paradigm from machine learning that

emulates human intelligence learning by trial and error when interacting with

the environment. RL maps situations into actions aiming at maximizing a

predefined objective [35]. There is a learning agent that interacts with the

environment taking actions and obtaining a reward from it. In general, the

agent does not have the entire information of the environment. The rewards

the agent receives from each action it takes define which actions are good or

bad for the agent (system). Therefore, the learning agent needs to keep trying

the actions to discover which actions maximize the reward. These actions may

change the actual state of the environment, affecting not only the immediate

situations but also the future ones. Therefore, the learning agent will learn over

time the best possible action it should take in a specific situation to maximize

its reward [35].

The environment, learning agent, state, reward, and actions are some of

the main elements of the RL field. However, there are some other important
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elements as [35]:

• Policy - it is the brain of the learning agent, defining how it will behave at

a given time. Therefore, the policy maps into an action the perceived state

of the environment, i.e., the learning agent takes a specific action for a

given policy and state [35].

• Value function - despite the fact that the reward indicates what is good

in an immediate state, it does not give us any information about what

is good in the long run. The value function comes to fill this gap since

it provides information about how good an action is in the long term.

Therefore, it is the expected reward that a learning agent will accumulate

over time by taking a given action. For example, a given action can have

a high-value function even if it has a low immediate reward at a given

future state. It happens if, regularly, this action yields high rewards in

some time instants [35].

• Model of environment - this element tries to give some information about

the behavior of the environment. For example, for a given state and action,

the best model will perfectly predict the next state and reward. The models

are used to look at possible future states before trying them, making it

easier for the learning agent to select the next action [35].

The RL solutions can deal with another difficulty of RRA in massive MIMO

systems, which is how to perform it efficiently only with partial CSI, since

UEs often have to be scheduled without complete knowledge of their full

instantaneous channel at the BS. In this context, RL appears as a very suitable

tool to this problem due to its capability of operating under limited/scarce

information and still achieving good performance in the long run [36]. Also, RL

is very suitable for RRA solutions since it aims to make an agent learn how

to behave in an environment to optimize a predetermined objective, such as

the system performance metrics considered by the scheduler, e.g., throughput,

fairness or QoS [8].

Herein, we highlight contextual multi-armed bandits (CMAB) [37] as an RL

method suitable to our studied problems. In CMAB, the learning agent observes

some side information (e.g., outdated CSI) called context (state), and, based

on that, chooses an action (e.g., schedules certain UEs) obtaining a reward

(e.g., throughput) from it [37]. Then, the expected reward, called action value,

can be calculated by averaging the obtained rewards of that action over time.

Therefore, at each iteration, a decision is made based on the current context
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Figure 1.4 – Reinforcement learning (RL) and CMAB problems.

State Action Reward

(a) RL problem.

State Action Reward

(b) CMAB problem.

Source: Created by the author.

and current action values aiming at maximizing the expected cumulative (long

run) reward. CMAB solutions have to obtain a balance between increasing

the information about the action values of different actions (exploration) and

selecting the actions with higher action values (exploitation) to reach this

goal [37]. The main difference between CMAB and other RL techniques is that

in most RL techniques the agent can take multiple consecutive actions before

obtaining the reward while in CMAB solutions the agent will use the state as

context to decide which action to take and it will give a reward. Figure 1.4a

shows the RL and CMAB. The RL have environmental states, where the next

states depend on previous actions with the rewards being able to be delayed

over time. Differently from RL The CMAB the actions that are taken in a given

state affect only its reward and the reward cannot be delayed over time.

problem where an action affects state and both of them affect the reward

and Figure 1.4b shows the CMAB problem where state and action affect reward.

Also we can cite the multi-agent feature that may help some wireless commu-

nications problems. The introduction of multi-agents in the model was shown

to fit very well to solve wireless communication problems, such as interference

coordination [38], [39].

1.2 Objectives and Thesis Structure

Considering the overview about massive MIMO, hybrid precoding, RRA and

RL presented in previous sections of this chapter, the main objective of this

thesis is to study RRA problems for massive MIMO subject to QoS guarantees

using optimization and RL tools.

In Chapter 2, we describe the common system model that is employed in the

following chapters of this thesis. In this chapter, we describe how the spatial

covariance matrix and its eigendecomposition are used as statistical CSI by the

clustering algorithm that is applied by the resource scheduling algorithm. Also,

we present the hybrid precoding and received signal models followed by how

the SINR and data rate are calculated.
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Chapter 3 of this thesis is divided into two parts. The first part evaluates

the problem of maximizing the system data rate considering only one RB and

service. The second part evaluates the problem of maximizing the system

data rate considering QoS constraints with multiple RBs and services. More

specifically, in the first part of Chapter 3, we propose a scheduling based

on a metric that accounts for the trade-off between their spatial channel

correlation and channel gain. The corresponding scheduling is optimally solved

by using branch and bound (BB) [40]. However, since the BB solution has high

computational complexity, we propose a suboptimal scheduling algorithm that

presents a reduced complexity. This scheduling is performed after the creation

of clusters composed of spatially compatible UEs, as explained in Chapter 2.

Moreover, we compare the proposed solutions with the random scheduler that

performs clustering and chooses the UEs to compose the groups at random.

In the second part of Chapter 3, we propose a framework composed of three

steps - clustering, grouping, and scheduling. The clustering step is done as

explained in Chapter 2. The grouping step is based on the previous metric

utilized earlier in that chapter. However, to address this more complex problem

containing multiple RBs, services, and QoS, new constraints are required.

Also, we make use of the channel hardening phenomenon in massive MIMO

to generate candidate SDMA groups independent of RBs. The scheduling step

uses the candidate SDMA groups from the grouping step to solve the data

rate maximization problem considering QoS requirements. We reformulate the

problem in order to be solved by the BB algorithm. In order to avoid the BB

complexity, we propose an efficient low complexity solution. In the simulation

results, we evaluate the performance of each part of the proposed framework

using both optimal and suboptimal solutions, as well as an adaptation of

the joint satisfaction maximization (JSM) scheduler [41] to a massive MIMO

scenario.

Chapter 4 of this thesis presents different scheduling problems using RL

tools. More specifically, we propose a scheduling framework using CMAB that

can dynamically adapt itself to solve three scheduling problems, which are:

i) throughput maximization; ii) throughput maximization with fairness guar-

antees, and; iii) throughput maximization with QoS provisioning, which are

well-known relevant problems in the area. The first step is to exploit the statisti-

cal CSI to create clusters of spatially compatible UEs, as explained in Chapter 2.

Next, we apply a new learning-based scheduler aiming at optimizing the desired

system performance metric. Moreover, only scheduled UEs need to feed back

instantaneous equivalent CSI, which also reduces the signaling overhead of the

proposal. The superiority of the proposed framework is demonstrated through
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numerical simulations in comparison with reference solutions.

1.3 Related Works

In this section we present a literature review of works related to this the-

sis. Many works have investigated scheduling with QoS guarantees [41]–[43].

In [41], the authors study the problem of throughput maximization with QoS

guarantees considering multiple services. The proposed scheduler, termed JSM,

utilizes derivatives of a sigmoidal function that is dynamically adapted to pro-

tect the most prioritized service satisfying the UEs’ QoS requirements. In [42],

the authors proposed a new low-complex scheduling method based on graph

theory aiming at maximizing the throughput considering QoS requirements

in an orthogonal frequency division multiple access (OFDMA) wireless net-

work. In [43], the authors propose a scheduling with the objective of balancing

energy-efficiency and fairness among UEs considering QoS requirements in

an OFDMA system. Therein, the scheduler is divided into two parts: the first

part schedules the UEs aiming at achieving fairness among UEs and the QoS

requirements, whereas the second part employs a power allocation algorithm

to achieve the maximum energy efficiency with the already scheduled UEs.

Despite their relevant contributions, the aforementioned works [41]–[43] do not

consider a MIMO scenario, which includes the challenge of managing spatial

resources besides the already considered time and frequency resources.

As it will be discussed in the sequel, several works propose scheduling

solutions for massive MIMO systems considering fully digital precoding. In [29],

the authors propose a solution that first creates clusters of UEs with similar

spatial channel covariance (statistical CSI) using K-means algorithm [44].

Then, this statistical CSI of the UEs in a cluster is used to create an outer

precoder that nearly suppresses the inter-cluster interference. Afterwards,

UEs are suitably polled by the BS for their equivalent instantaneous CSI,

which takes into account the UEs’ channels and the cluster outer precoder.

This equivalent instantaneous CSI has a smaller dimension than the full

instantaneous channel (implying less signaling) and it is used to create an

inner precoder that suppresses the UEs intra-cluster interference. In [45],

the authors propose an algorithm that performs joint dynamic clustering

and CSI acquisition, and a scheduler that selects semi-orthogonal UEs. In

[46], the authors use graph theory to propose a clustering and scheduling

method. Their solution has polynomial computational complexity and deals

with fairness among UEs. In [47], the authors propose a new hierarchical

clustering method that builds the groups by merging clusters. In [48], the
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authors propose a method to jointly optimize the number of clusters, the

clustering procedure, and the beamforming strategy. Furthermore, the authors

in [47] and [48] propose a scheduler that utilizes a metric based on signal

to leakage plus noise ratio (SLNR) to suppress inter-cluster and intra-cluster

interference. In [49], the authors propose a greedy UE scheduling aiming at

mitigating the inter-cluster and intra-cluster interference. However, the digital

precoders of this method are calculated for each UE until the number of UEs per

cluster is reached. Therefore, computational complexity becomes prohibitive

as the number of UEs and cluster size increase. In [50], a graph theory-

based clustering and scheduling method is proposed to maximize the system

throughput while guaranteeing fairness. This same objective of maximizing the

system throughput while guaranteeing fairness has also been study in [51] and

[52]. In [51] the authors propose an RL-based scheduling solution, where each

UE is considered as an autonomous agent that makes its own RB allocation.

In [52] the authors propose a greedy scheduling that selects the UEs based on

their channel gains. Although the proposals in [29], [45]–[52] have their own

merits, the assumption of fully-digital precoding is hard to hold in practice

when massive MIMO is considered as previously explained.

In [32], [53]–[55], new scheduling schemes using hybrid precoding are pro-

posed for massive MIMO. In [32], the authors propose a scheduler that uses

only statistical CSI to select the UEs aiming at maximizing the system through-

put. It schedules the UEs using a parameter that controls a trade-off between

channel gain and spatial channel correlation. The authors in [53] propose a

new scheduling method based on matrix vectorization. The scheduler vectorizes

the channel matrix and creates groups of UEs based on Pearson’s correlation

coefficient. Afterwards, a set of UEs is selected from existing groups aiming

at maximizing the throughput. In [54] the authors also propose a scheduler

based only on statistical CSI, however, their objective was to maximize the

throughput while guaranteeing the fairness among UEs. The problem is for-

mulated based on Lyapunov-drift optimization, which models the UEs priority

based on their transmission history creating virtual queues. Afterwards, a low-

complexity greedy algorithm is proposed to obtain near-optimal performance.

In [55], the authors analyze two scheduling strategies based on statistical CSI

aiming at maximizing the throughput in a scenario where the UEs are moving

at high speeds. The scheduling strategies are semi-orthogonal user selection

and a greedy algorithm. Since the schedulers are based on statistical CSI, the

same scheduled UEs are served in subsequent transmit time intervals (TTIs)

without rescheduling while the UEs are moving. Simulation results showed

that rescheduling is necessary, otherwise throughput drops over time. Despite
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their contributions, the aforementioned works [32], [53]–[55] do not take into

account the mandatory features of modern wireless networks, such as QoS

provisioning and support of multiple services. These features impose additional

constraints on the optimization problem as well as more challenges since the

UEs have different QoS demands and channel quality states.

Since obtaining CSI is one of the principal issues of massive MIMO, the CSI

usage by schedulers should be taken into account. It is important to notice

that most of the presented works assume that instantaneous CSI is always

available in the scheduler part, such as [41]–[43], [50], [51], [53]. Among the

aforementioned works, the ones that use only the statistical information for

scheduling are [32], [54] and [55]. The advantage of using statistical CSI is that

it reduces the signaling overhead since the estimation can be done without

dedicated pilots and the statistical CSI variation speed is much lower than that

of the instantaneous CSI [54].

RL-based scheduling has gained popularity and has been applied in differ-

ent contexts with different objectives [56]–[58]. In [56], the authors propose a

combinatorial multi-armed bandits (MAB) based scheduler to solve the joint

mode selection and resource allocation in a device-to-device system. They re-

duced the action space and improved the algorithm learning speed dividing

the problem into two stages, which reduced the complexity of the problem.

The first stage is responsible for scheduling only the cellular UEs and aims

at maximizing the throughput. The second stage is responsible for schedul-

ing the device-to-device pairs aiming at maximizing the system throughput.

In [57], the authors propose an actor-critic RL-based scheduling aiming at

maximizing the fairness among UEs maintaining QoS in long-term evolution

(LTE) systems. In [58], the authors propose an RL and neural networks based

framework aiming at guaranteeing the QoS requirements for different types of

services in OFDMA ultra-reliable low-latency communications. They evaluate

the framework performance over different RL algorithms. The aforementioned

RL-based schedulers [56]–[58], as many other RL-based schedulers, model their

problem, environment, action, state, and reward space, taking into account

their predetermined scenario and assumptions. Thus, their modeling does not

fit on our problem. Therefore, we consider that a novel RL-based scheduler

is needed to address this complex scenario containing a massive number of

antennas, hybrid beamforming, different objectives, and services.

1.4 Scientific Productions
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Chapter 2
System Model

We consider the downlink of a cellular multi-user MIMO system based

on OFDMA composed of a BS serving a set 𝒥 of UEs randomly distributed

within linearly spaced hotspots with a determined radius, where |𝒥 | = 𝐽 and

|·| denotes the set cardinality. As we are dealing with a multiservice scenario,

we assume that the number of services provided by the system operator is

𝑆 and that 𝒮 is the set of all services. We consider that the set of UEs from

service 𝑠 ∈ 𝒮 is 𝒥𝑠 and that 𝐽𝑠 = |𝒥𝑠|. Note that
⋃︀

𝑠∈𝒮 𝒥𝑠 = 𝒥 and
∑︀

𝑠∈𝒮 𝐽𝑠 = 𝐽.

Moreover, we consider that the BS is equipped with a uniform planar array

(UPA) composed of 𝑁t antenna elements.

The UEs are equipped with a single omnidirectional antenna. We consider

that the smallest allocable resource unit, termed RB, has 𝑁symb consecutive

orthogonal frequency division multiplexing (OFDM) symbols and 𝑁sc adjacent

OFDMA subcarriers. At each TTI, 𝐾 out of the 𝐽 UEs are selected to receive

data at the same RB. We are going to use the eigenmode as the analog precoder

and the technique that makes it possible requires the combination of two RF

chains[59]. Therefore, we consider that the number of scheduled UEs 𝐾 is

equal to half the number of available RF chains at the BS. Moreover, 𝒩 is the

set of available RBs and |𝒩 | = 𝑁RB. Before transmission, for a given RB and TTI,

the symbol 𝑥𝑘 to be sent to UE 𝑘 is prefiltered at the BS by the precoding vector

𝑓𝑘 ∈ C𝑁t×1. The filtered symbols are then transmitted through the channel

associated with the RB. Figure 2.1 illustrates the considered system model.

In order to simplify our notation, we omit the index for the RB. Later, when

referring to channel and precoding matrices, these will be indexed to a specific

RB whenever necessary. The downlink channel vector between the BS and the

UE 𝑘 is denoted by ℎ𝑘 ∈ C𝑁t×1, where this UE 𝑘 belongs to a given SDMA group.

The coefficients in the channel vector of a given RB refer to the corresponding
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Figure 2.1 – System model with massive MIMO system serving 𝐾 UEs distributed in
a set of linearly spaced hotspots. These UEs are using one of the different services
provided by the system operator.

Hotspot 1

Hotspot 2

Hotspot N

Source: Created by the author.

channel of the middle subcarrier of the RB and the first OFDM symbol in a TTI,

and these channel coefficients are assumed to remain constant within a TTI.

Thus, the prior-filtering receive symbol 𝑦𝑘 at the 𝑘th selected UE is

𝑦𝑘 = ℎT
𝑘 𝑓𝑘
√
𝑝𝑘 𝑥𝑘 +

∑︁
𝑖 ̸=𝑘 , 𝑖∈ℳ

ℎT
𝑘 𝑓 𝑖
√
𝑝𝑖 𝑥𝑖 + 𝑧𝑘, (2.1)

where 𝑝𝑘 is the power allocated to the UE 𝑘; where ℳ is the set containing

the UEs receiving information from BS; the second term on the right-hand

side of (2.1) represents the multi-user interference, also known as intra-cell

interference, generated by the other 𝐾 − 1 UEs sharing the same RB; and 𝑧𝑘

is the additive Gaussian white noise, which is distributed as 𝒞𝒩 (0, 𝜎2), with

standard deviation 𝜎.

2.1 Clustering

As adopted in [29], [32], [47], we assume that UEs are split into clusters

based on statistical CSI only. As we will show in Section 2.2, the clustering

process greatly simplifies the analog precoder design. The use of statistical CSI

is highly beneficial in FDD systems since this information changes at a slow

pace and, therefore, reduces the frequency at which CSI estimation is required.

Herein, the covariance matrix is given as in [29], [32] by

Ω𝑗 =
1

𝜏

𝜏∑︁
𝑡=1

ℎ𝑡,𝑗ℎ
H
𝑡,𝑗, (2.2)

where ℎ𝑡,𝑗 ∈ C𝑁t×1 is the channel vector between the BS and UE 𝑗 at TTI 𝑡 and 𝜏

indicates the number of channel samples considered to estimate the covariance
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matrix. The eigendecomposition of the covariance matrix is expressed as

Ω𝑗 = 𝐷𝑗Λ𝑗𝐷
H
𝑗 , (2.3)

where 𝐷𝑗 ∈ C𝑁t×𝑁t and Λ𝑗 ∈ C𝑁t×𝑁t contain the eigenvectors and the eigenvalues

of Ω𝑗, respectively.

In the following, we describe the K-means clustering algorithm, which par-

titions the 𝐽 UEs into 𝑁C clusters [60], i.e., 𝑁C is the number of clusters.

Note that, although we use K-means, we are not limited to it; other cluster-

ing methods could be employed such as agglomerative clustering [47], fuzzy

c-means [61] or K-medoids [62]. Herein, the K-means algorithm uses the domi-

nant eigenvector of each UE 𝑗 from the covariance matrix Ω𝑗 of (2.3) as input.

Firstly, the algorithm randomly chooses 𝑁C UEs and considers their dominant

eigenvectors as the initial cluster’s centroids. After that, the UEs are associated

to the cluster that minimizes the Euclidean distance between their dominant

eigenvectors, i.e., to the nearest cluster. Then, the mean of the dominant eigen-

vectors from the UEs belonging to each cluster determines the cluster’s new

(updated) centroid. The K-means algorithm repeats this process until there is

no change in the UE-to-cluster association, or a maximum number of iterations

is reached. For more details on K-means, please refer to [60]. A pseudo-code

for K-means is presented in Algorithm 1.

Algorithm 1 K-means algorithm.
1: Randomly choose the dominant eigenvector of 𝑁C UEs as the initial clusters’ centroids;
2: while UEs-to-cluster assignments and clusters’ centroids do not converge or the maximum

number of iterations is not reached do
3: Assign UEs to the closest cluster;
4: Update clusters’ centroids;
5: Increment the iteration counter;
6: end while

One specific drawback of K-means is the determination of the number

of clusters, 𝑁C. This is an important issue in clustering analysis since most

of the clustering algorithms assume that they know a priori the number of

clusters 𝑁C. There is a variety of clustering validation measures and methods

in the literature for evaluating clustering algorithms. These measures and

methods are used to obtain the optimal number of clusters. In [63], the authors

evaluate and compare 30 proposed methods to determine the optimal number

of clusters. The silhouette index, proposed in [64], shows how good each item

(UE, in our case) is classified. However, although there are some works in

the literature that focus on the clustering algorithm design and, therefore, on

the optimum number of clusters, our work uses clustering as part of a more

complex framework. More specifically, our focus lies on the scheduling and
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resource allocation, which is performed after the clustering stage. Therefore,

for the sake of simplicity, we used the well-known K-means algorithm to solve

the clustering problem, which needs, as many other clustering algorithms, the

desired number of clusters as input. Also, other clustering algorithms could

perform better depending of the considered scenario such as non line of sight

scenario.

2.2 Analog and Digital Precoding Design

In general, in order to schedule UEs, the potential transmit data rate should

be estimated. However, to calculate the data rate, we need to know a priori the

hybrid beamforming filters so as to estimate SINR. Therefore, in this section, we

present the hybrid precoding scheme and the data rate calculation. We assume

that the BS already performed the clustering step and built the SDMA groups.

Consider a given SDMA group 𝑔 that is composed of 𝐺𝑔 UEs and consider

that 𝐽𝑐 is the number of UEs from SDMA group 𝑔 belonging to cluster 𝑐. We

would like to highlight that 𝑔 is the notation for the SDMA group that can

be scheduled and 𝑐 is the notation for a given cluster. Then, let us define the

matrix 𝐸𝑐 ∈ C𝑁t×𝑁t as the average of the eigenvector matrices 𝐷𝑗, defined in

(2.3) belonging to the cluster 𝑐, i.e.

𝐸𝑐 =
1

𝐽c

∑︁
𝑗∈𝒥𝑐

𝐷𝑗, (2.4)

where 𝒥𝑐 is the set of UEs belonging to cluster 𝑐 and |𝒥𝑐| = 𝐽c. Thus, let us

define 𝐾𝑐 ∈ C𝑁t×𝐽𝑐 as the matrix containing the 𝐽𝑐 strongest eigenvectors of

matrix 𝐸𝑐 for each cluster 𝑐 as

𝐾𝑐 =
[︁
𝑒𝑐,1 𝑒𝑐,2 . . . 𝑒𝑐,𝐽𝑐

]︁
, (2.5)

where the vector 𝑒𝑐,𝑏 is the 𝑏𝑡ℎ strongest eigenvector from matrix 𝐸𝑐 of cluster 𝑐.

Therefore, 𝐾𝑐 contains the 𝐽𝑐 best beams of cluster 𝑐.

In the following, we present the computational complexity analysis to obtain

the 𝐽𝑐 strongest eigenvectors of the covariance matrix. We are using the singular

value decomposition (SVD) to decompose (2.3) and, according to [65], the

computational complexity to compute the SVD of an 𝑚× 𝑛 matrix is 𝑂(𝑚2𝑛+

𝑚𝑛2 + 𝑛3). After that, we need to employ a sorting algorithm in the eigenvalue

matrix. In general, according to [66], the worst-case computation complexity to

sort a vector of size 𝑚 is 𝑂(𝑚2). Substituting 𝑚 and 𝑛 by 𝑁t, the computational

complexity to obtain the strongest eigenvectors of a UE is 𝑂(𝑁3
t ). Therefore,

we perform those operations 𝐽𝑐 times to obtain the 𝐽𝑐 strongest eigenvectors,

which give us a worst case computational complexity of 𝑂(𝐽𝑐𝑁
3
t ).
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Herein, the analog precoder 𝐹 RF
𝑔 ∈ C𝑁t×𝐺𝑔 from SDMA group 𝑔 is obtained

using (2.5) for each cluster, and can be written as

𝐹 RF
𝑔 =

[︁
𝐾1 𝐾2 . . . 𝐾𝑁C

]︁
. (2.6)

Since the UEs of different clusters are highly spatially uncorrelated, the analog

precoder nearly eliminates the inter-cluster interference [29], [32]. Note that

the elements of the precoder (2.6) do not fulfill the unity amplitude constraint

of analog precoders. However, it is possible to implement such a precoder by

combining two RF chains for each UE stream, as discussed in [59]. According

to [59], this approach achieves the same performance of digital precoding with

the requirement that the number of RF chains should be twice the number

of spatial streams. There are other methods, such as those presented in [59]

that enable the use of one RF chain per stream up to a negligible performance

loss. We choose the simplest approach that consists in constructing the analog

precoding using the phases of each entry in the matrix defined in (2.6), i.e.,

using twice the number of chains.

Let us define the group channel matrix 𝐻𝑔 ∈ C𝐺𝑔×𝑁t of the UEs belonging to

the SDMA group 𝑔 as

𝐻𝑔 =
[︁
ℎ𝜁1,𝑔 ℎ𝜁2,𝑔 . . . ℎ𝜁𝐺𝑔,𝑔

]︁T
, (2.7)

where 𝜁𝑘,𝑔 is the 𝑘th UE of SDMA group 𝑔. The group channel matrix defined as

𝐻𝑔 and the group analog precoder 𝐹 RF
𝑔 form the equivalent channel matrix

𝐻̄𝑔 = 𝐻𝑔𝐹
RF
𝑔 ∈ C𝐺𝑔×𝐺𝑔 . (2.8)

To suppress the residual intra-cluster interference, we exploit the digital pre-

coder, that is part of hybrid precoding by using the zero-forcing (ZF) digital

filter defined as [67]

𝐹 BB
𝑔 =

(𝐻̄𝐻
𝑔 )−1

‖(𝐻̄𝐻
𝑔 )−1‖F

, (2.9)

where ‖ · ‖F represents the Frobenius norm. However, the data throughpput

is decreased if the scheduled UEs have highly correlated channels. Therefore,

in Chapters 3 and 4 we are going to see different techniques to select the

scheduled UEs in order to decrease the loss in throughput related to correlated

channels.

The total power constraint is enforced by normalizing the digital and analog

filters, such that ‖𝐹 RF
𝑔 𝐹 BB

𝑔

√︀
𝑃𝑔‖2F = 𝑝RB, where 𝑃𝑔 ∈ R𝐺𝑔×𝐺𝑔

+ is a diagonal power

matrix with the power allocated to each UE belonging to the SDMA group 𝑔

and 𝑝RB is the transmit power for a given RB. We consider that the number of
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UEs in the SDMA group is equal to the number of streams 𝑁s, i.e., there is one

stream per UE in an SDMA group. Finally, 𝐹 RF
𝑔 and 𝐹 BB

𝑔 can be combined to

compose the hybrid precoding matrix 𝐹𝑔 = 𝐹 RF
𝑔 𝐹 BB

𝑔 ∈ C𝑁t×𝐺𝑔 .

Note that, one limitation of the scheme that we are proposing is that it is

not designed to support pure non line-of-sight (NLOS) channels since the NLOS

channel does not have one dominant path. The reason for that is due to usage

of clustering and analog precoders based on the dominant eigenvectors of the

UE statistical channels. To address the pure NLOS case, we should consider

the following modifications: another clustering algorithm or a modification in

the K-means algorithm should be considered, and a different analog precoder

design that considers not only the dominant eigenvector but an average of the

strongest ones.

The receive information vector 𝑦̂𝑔 ∈ C𝐺𝑔×1 of the SDMA group is given by

𝑦̂𝑔 = 𝐻𝑔𝐹𝑔

√︀
𝑃𝑔 𝑥𝑔 + 𝑧𝑔, (2.10)

where 𝑥𝑔 ∈ C𝐺𝑔×1 is the SDMA group symbol vector and 𝑧𝑔 ∈ C𝐺𝑔×1 is the SDMA

group noise vector. We are considering that the symbols have unitary variance,

therefore, the average SINR perceived by a selected UE 𝑖 from SDMA group 𝑔

can be calculated as

Γ𝑖 =
|𝑞𝑖,𝑖|2∑︀

𝑗 ̸=𝑖

|𝑞𝑖,𝑗|2 + 𝜎2
𝑖

, (2.11)

where 𝑞𝑖,𝑗 is the element at the row 𝑖 and column 𝑗 of 𝑄𝑔 = 𝐻𝑔𝐹
√︀

𝑃𝑔 ∈ C𝐺𝑔×𝐺𝑔

and 𝜎2
𝑖 is the noise power of UE 𝑖. The data rate of UE 𝑖 is calculated according

to Shannon capacity formula [68] and is given by

𝑟𝑘 = 𝑁sc𝑁symb min {log2(1 + Γ𝑘), 8} bits/TTI/RB, (2.12)

where min {𝑥, 8} refers to our modulation order upper bound using 256-Quadrature

Amplitude Modulation (QAM), which is the highest modulation order supported

by 5G new radio (NR) systems [69].

Note that, when RRA is concerned, our presented scenario has similar chal-

lenges to the conventional MIMO scheduling, which is combinatorial. However,

there are additional issues in our scenario, such as the higher number of anten-

nas and, therefore, the number of multiplexed UEs, as well as the assumption

of hybrid precoding. In this scenario, the data rate of each UE thus depends on

the employed analog and digital precoders, which, in their turn, depend on the

chosen SDMA group and clusterization. So, there is a hard inter-dependence

of scheduling and hybrid precoding. Consequently, in order to find an optimal

solution, it would be necessary to use brute force enumeration to estimate the
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data rate of each UE at each possible SDMA group, which is impracticable for

massive MIMO systems. Some challenges of precoding design will be discussed

in Section 3.2.
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Chapter 3
RRA in Massive MIMO Systems
Using Optimization Tools

In the present chapter, we deal with RRA problems for massive MIMO net-

works proposing scheduling algorithms using optimization tools to optimize the

system performance. More specifically, we propose a framework to solve RRA

problems in massive MIMO composed of clustering, grouping and scheduling.

In the first part of this chapter, we deal with the problem of maximizing the data

rate considering only one RB. This problem is formulated as a binary quadratic

problem which is solved using BB and a proposed low-complexity algorithm.

In the second part of this chapter, we deal with the problem of maximizing

the throughput and satisfying QoS constraints considering multiple RBs and

services. This problem is divided into SDMA grouping and scheduling parts

which are optimally solved by exhaustive search and BB algorithm, respectively.

Due to the exponential complexity of exhaustive search and BB solutions,

low-complexity solutions with polinomyal complexity are proposed.

3.1 Contributions and Chapter Organization

This chapter has the following main contributions:

• Proposal of a framework for RRA in massive MIMO systems that is divided

into three parts: clustering, grouping and scheduling. The clustering

and grouping steps aim at reducing the scheduling search space by

creating low-correlated clusters of UEs and, afterwards, exploiting the

channel hardening characteristic to generate a suitable set of SDMA

groups that are going to be used in the scheduling step. The scheduling

step assigns RBs to the SDMA groups generated in the previous step

aiming at maximizing a given objective;
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• Mathematical formulation of the grouping problem aiming at maximizing

the throughput considering only one RB and reducing the intra-cluster

interference. Also, it uses only statistical CSI;

• Mathematical formulation of the grouping problem aiming at maximizing

the throughput and satisfying QoS constraints considering multiple RBs,

services, and reducing the intra-cluster interference. Also, it uses only

statistical CSI and exploits the channel hardening effect;

• Adaptation of the data rate maximization problem with QoS guarantees

from [70] to a scenario with massive MIMO using hybrid beamforming;

• Proposal of efficient and low-complexity solutions for the considered

problems;

• Calculation of the computational complexity of the involved algorithms

and their performance evaluation by means of computational simulations.

This chapter is organized as follows. Section 3.2 defines the main problem.

Afterwards, we propose a general framework to solve it. Section 3.3 describes

the problem of maximizing the system data rate considering one RB. Next,

we propose a low-complexity solution to this problem and evaluate it against

the optimum and baseline solutions. Furthermore, Section 3.4 describes the

problem of maximizing the system data rate considering multiple RBs, services

and QoS requirements. Afterwards, we propose a low-complexity solution to

this problem and evaluate it against the optimum solution and a solution

adapted from the literature. Finally, Section 3.5 presents the main chapter

conclusions.

3.2 Problem Definition

Note that a smart design of precoders needs to be considered to avoid the

degradation of system SE caused by the intra-cell interference. The creation of

SDMA groups containing spatially compatible UEs can avoid poor SE. In this

sense, the total number of possible groups assuming 𝐽 single-antenna UEs

and the double of stream number is given by [70]

min (2·𝑠𝑡𝑟𝑒𝑎𝑚𝑠,𝐽)∑︁
𝑙=1

(︂
𝐽

𝑙

)︂
. (3.1)

The exhaustive search can be used to evaluate the best SDMA group among

all possibilities. However, this brute force method leads to high computational
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costs. Therefore, low-complexity solutions to obtain the SDMA groups are

required.

As previously mentioned in this thesis, we propose a general framework for

RRA in massive MIMO systems. The proposed framework is divided into three

parts and summarized in Figure 3.1.

Figure 3.1 – Proposed framework composed of three steps: clustering, grouping and
scheduling.

Step 1: Clustering Procedure
Input: all MSs

Output: 𝑁C Clusters
Objective: Classify UEs’ channels
according to spatial compatibility

Step 2: Grouping Procedure
Input: Clusterized UEs

Output: 𝑁g SDMA groups
Objective: Build several SDMA groups

Step 3: Scheduling Procedure
Input: 𝑁g SDMA groups

Output: Association among
RBs and scheduled groups

Objective: Maximize the through-
put considering QoS requirements

Source: Created by the author.

The first one, called clustering procedure, divides all UEs into 𝑁C clusters,

where each cluster contains UEs with compatible spatial channel characteris-

tics (correlated channels), as explained in Section 2.1. This step can make the

grouping process easier since, in general, UEs from different clusters will have

spatially compatible (not similar) channels. In this way, a grouping procedure

after clustering is able to reduce the search space of SDMA groups. However,

the resulting number of SDMA groups might still remain impracticable. In

the second part, called grouping procedure, we select UEs from each cluster

to form several SDMA groups. Intelligent strategies to build efficient groups

in terms of SE are employed here since the number of SDMA groups should

be limited in order not to increase the complexity of the next step. Therefore,

we build a total of 𝑁g SDMA groups according to a metric that will be defined

in details in Section 3.3, i.e., we drastically reduce the number of candidate

SDMA groups through clusterization and grouping procedures. Finally, in the

third part called scheduling procedure, we assign RBs to the SDMA groups

selected in the second step aiming at optimizing a predefined objective. Thus,
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we allocate RBs to those built SDMA groups aiming to satisfy QoS requirements

and maximizing the total system data rate.

3.3 Maximization of System Data Rate Considering One RB

In this section we deal with the problem of maximizing the system data

rate considering only one RB. Compared to the case with multiple RBs, this

problem is less complex and can be used to gain insights about solutions to

the more complex problem with multiple RBs studied in Section 3.4. Since this

section only deals with one RB, the grouping and scheduling procedures of our

proposed framework are done jointly.

The clustering procedure of Section 2.1 reduces the number of possible can-

didate SDMA groups since selecting too many UEs from the same cluster can

lead to higher interference among UEs. However, the number of possible SDMA

groups still remains unpractical. Therefore, a solution for further reducing the

number of possible SDMA groups is necessary and we formulate a grouping

problem that deals with such a challenge. This step is applied in each cluster

separately to choose a set of UEs to compose an SDMA group assuming that the

inter-cluster interference is negligible since UEs of different clusters are chosen

to have low-correlated channels. Since more than one UE of the same cluster is

part of an SDMA group, the scheduler needs to select less spatially correlated

UEs (even knowing that these UEs already have high correlation) to deal with

the intra-cluster interference. It is possible to make this assumption due to

the massive MIMO technology and higher frequencies that allows the creation

of narrow beams which reduces the interference of the scheduled UEs in the

same cluster. Note that, the main objective is to have UEs with higher data rate

when scheduling them together in an SDMA group. However, to estimate the

data rate it is necessary to calculate the filters before calculating the SINR and

then calculate the data rate. Therefore, these calculations are avoided by using

the proposed SDMA grouping and metrics, i.e., this solution avoids computing

digital precoders for every possible candidate group of UEs inside each cluster.

Next, we describe an assumption that is used to drastically reduce the num-

ber of possible compositions of scheduled UEs in a given TTI. For a group of

UEs scheduled in the same resource, ZF precoding sends the signal of a served

UE in the joint null space projection of the other scheduled UEs. Therefore,

the channel correlation among UEs directly impacts on the channel gain of

each UE after ZF precoding [67]. Figure 3.2 illustrates this behavior, where

𝒮𝑘 = Span(ℎ𝑘), and 𝜃𝒮𝑘,ℎ𝑘
is the angle between the channel vectors ℎ𝑘 and 𝒮𝑘.

Using 𝜃𝒮𝑘,ℎ𝑘
, the channel correlation coefficient between UE 𝑘 and the subspace
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𝒮𝑘 is given by cos(𝜃𝒮𝑘,ℎ𝑘
), with the channels becoming more uncorrelated as

𝜃𝒮𝑘,ℎ𝑘
approaches 𝜋

2
, which increases the effective channel gains after ZF pre-

coding [67]. The channel ℎ𝑘 can be decomposed into two projections: projection

into the null space projection and space projection. As previously mentioned,

UEs belonging to different clusters are supposed to be low-correlated (i.e.,

cos(𝜃𝒮𝑘,ℎ𝑘
) tends to be close to zero for UEs of different clusters). Then, the

interference from the signals transmitted from the BS serving UEs belonging

to different clusters becomes negligible [32]. The channel correlation among

UEs of different clusters will be briefly analyzed in Section 3.3.2. Note that,

this assumption allows us to split the problem making it possible to schedule

the UEs for each cluster separately reducing the search space. Moreover, one

simple and possible solution that could be used as a baseline solution is to

make several clusters and randomly schedule one UE of each cluster. However,

this solution will lose in data rate since the UEs could have spatially correlated

channels increasing the interference among them.

Figure 3.2 – Projection of channel ℎ𝑖 onto interference and null interference
spaces [67].
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In the sequel, we define the variables used to formulate the problem of

maximizing the data rate. Let us define the matrix 𝐷̂ ∈ C𝐽𝑐×𝑁t containing all

UEs dominant eigenmodes of a given cluster:

𝐷̂ =
[︁
(𝑑1,1𝜆1) (𝑑2,1𝜆2) . . . (𝑑𝐽𝑐,1𝜆𝐽𝑐)

]︁T
=
[︁
𝑑̂1,1 𝑑̂2,1 . . . 𝑑̂𝐽𝑐,1

]︁
,

(3.2)

where 𝑑𝑗,1 is the dominant eigenvector of UE 𝑗, 𝜆𝑗 is the highest eigenvalue

obtained from Λ𝑗, and 𝑑̂𝑗,1 is the dominant eigenmode of UE 𝑗.

Consider 𝑎 ∈ R𝐽𝑐×1 as the attenuation vector containing the inverse of the

dominant eigenvalue (channel gain) of all 𝐽𝑐 UEs in a cluster. Then, we can
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express 𝑎 using 𝑑̂ as:

𝑎 =
[︁
‖𝑑̂1,1‖−2

2 ‖𝑑̂2,1‖−2
2 . . . ‖𝑑̂𝐽𝑐,1‖−2

2

]︁T
. (3.3)

Then using (3.2) and (3.3), we can write the spatial correlation matrix

𝐶 ∈ R𝐽𝑐×𝐽𝑐 as

𝐶 =
⃒⃒⃒√︀

diag(𝑎)𝐷̂𝐷̂H
√︀

diag(𝑎)
⃒⃒⃒
. (3.4)

Let the binary selection vector 𝑢 be defined as

𝑢 =
[︁
𝑢1 𝑢2 . . . 𝑢𝐽c

]︁T
, (3.5)

where the element 𝑢𝑗 assumes the value 1 if UE 𝑗 is selected to compose an

SDMA group and 0 otherwise. Then, combining (3.4) and (3.5), the convex

combination 𝑚(Π̂) of the total spatial correlation and channel gains is defined

as

𝑚𝑐(Π̂𝑐) = (1− 𝛽)
𝑢T𝐶𝑢

‖𝐶‖F
+ 𝛽

𝑎T𝑢

‖𝑎‖F
, (3.6)

where Π̂𝑐 is the set of UEs belonging to the SDMA group of cluster 𝑐, and

0 ≤ 𝛽 ≤ 1 is a control parameter establishing the trade-off between spatial

correlation and channel gain. The terms
1

‖𝐶‖F
and

1

‖𝑎‖F
are normalization

factors intended to balance 𝐶 and 𝑎, i.e., to try to compensate for their absolute

difference and to have a likely unbiased 𝛽 [24]. Therefore, 𝛽 tries to establish a

trade-off between spatial compatibility and channel gain.

Using the definitions above, the UE selection per cluster is made by solving

the following optimization problem:

𝑢⋆ = argmin
𝑢

{︂
(1− 𝛽)

𝑢T𝐶𝑢

‖𝐶‖F
+ 𝛽

𝑎T𝑢

‖𝑎‖F

}︂
(3.7a)

subject to:

1T
𝐽c
𝑢 =

⌊︂
𝑁s

𝑁C

⌋︂
, (3.7b)

𝑢 ∈ B𝐽c , (3.7c)

where 𝑢⋆ is the solution that can be directly mapped to the best cluster SDMA

group Π̂𝑐 containing
⌊︁

𝑁𝑠

𝑁C

⌋︁
UEs that have low total spatial correlation and low

total channel attenuation. Equation (3.7b) ensures that only
⌊︁

𝑁s
𝑁C

⌋︁
1 UEs per

cluster are selected, i.e., we ensure that the same number of UEs per clusters

are scheduled. The last constraint assures that 𝑢 is binary. This problem is
1 Since we need to select at least one UE, this ratio should be equal or greater than 1.
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solved by each cluster. After all clusters do it, the BS puts these SDMA groups

in an unified SDMA group to transmit information to them.

The problem in (3.7) is a binary quadratic problem that can be optimally

solved using the BB algorithm. However, the BB algorithm might be prohibitively

complex, since it computes the grouping metric 𝑚(Π̂𝑐) for each cluster and

according to (3.1), the number of SDMA groups increases combinatorially with

the number of UEs 𝐽. Therefore, efficient suboptimal algorithms are required.

Figure 3.3 – Illustrative example of BF algorithm for SDMA grouping considering 6
UEs, 2 clusters and 4 streams. The gray and white boxes represent UEs that already
belong to the group and candidate UEs, respectively. From the picture, after the clus-
tering and grouping steps, the SDMA group is composed of UEs {1,3,4,5}.
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Source: Created by the author.

3.3.1 BF Algorithm

The best fit (BF) algorithm first selects an initial UE in order to calculate the

correlation metric 𝑚(Π̂𝑐). The chosen UE is the one with strongest dominant

eigenmode (highest channel gain). After that, the algorithm employs a greedy

search to find the UE that minimizes the metric 𝑚(Π̂𝑐) when this UE is added

to the group. Thus, the metric is calculated for each candidate UE of cluster 𝑐

that does not belong to the SDMA group formed by the already selected UEs.

Then, the same procedure is repeated until
⌊︁
𝑁S
𝑁C

⌋︁
UEs associated with each

cluster are selected, as to respect constraints (3.7b). The pseudo-code of the

BF algorithm is presented in Algorithm 2.

At this point, it is also important to present a computational complexity anal-

ysis for the proposed algorithm. Therefore, as in [70], we consider summations,

multiplications, and comparisons as the most relevant and time-consuming
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Algorithm 2 BF Algorithm.
1: for 𝑐 = 1 until 𝑐 = 𝑁C do
2: 𝑢← 0𝐽C

3: 𝒥𝑐 is the set of UEs belonging to cluster 𝑐
4: Π̂𝑐 is the group of UEs that are in the SDMA group and belong to cluster 𝑐

5: 𝑗⋆ ← argmax
𝑗

{︁
‖𝑑𝑗‖

}︁
, ∀𝑗 ∈ 𝒥𝑐

6: 𝑢𝑗⋆ ← 1
7: Π̂𝑐 ← {𝑗⋆} ◁ SDMA group updated
8: 𝒥𝑐 ← 𝒥𝑐 ∖ {𝑗⋆} ◁ Set of UEs updated
9: while 1T𝐽C

𝑢 ̸=
⌊︁
𝑁𝑠
𝑁C

⌋︁
do ◁ Constraints (3.7b)

10: 𝑗⋆ ← argmin
𝑗

{︁
𝑚(Π̂𝑐)

}︁
,∀𝑗 ∈ 𝒥𝑐

11: 𝑢𝑗⋆ ← 1
12: Π̂𝑐 ← Π̂𝑐 ∪ {𝑗⋆}
13: 𝒥𝑐 ← 𝒥𝑐 ∖ {𝑗⋆}
14: end while
15: end for
16: Π̂ =

[︀
Π̂1 Π̂2 . . . Π̂𝑁C

]︀
operations. We use the asymptotic notation 𝒪(·) to represent the worst-case

computational complexity. The algorithm searches within a cluster which UE

has the strongest eigenmode. Note that, 𝐽C comparisons per cluster are nec-

essary. Then, the selected UE is excluded from the search for the next UE

to compose the SDMA group. If the number of streams or required number

of selected UEs per cluster
⌊︂
𝑁𝑠

𝑁𝑐

⌋︂
≥ 2, the algorithm chooses another user

that minimizes the compatibility metric in (3.6). The process is repeated until

number of users selected per cluster is equal to number of streams per cluster.

Based on this, the total number of comparisons considering all the clusters is

𝑁C

⌊𝑁s/𝑁C−1⌋∑︁
𝑖=0

(𝐽C − 𝑖). Note that this solution has a polynomial complexity while solvers

based on the well-known BB method have exponential complexity [71]. Fig-

ure 3.3 shows a simple example of the BF algorithm applied to the problem

(3.7) for a scenario with 𝐽 = 6 UEs, 𝑁C = 2 clusters and 𝑁s = 4 streams.

3.3.2 Performance Evaluation

In this section, we compare the proposed solution with the only clustering

(OC) algorithm, which applies the clustering procedure and after that randomly

selects
⌊︁
𝑁S
𝑁C

⌋︁
UEs to compose the SDMA group. Furthermore, we solve the

problem defined in (3.7) using BF and BB methods. We utilized the IBM ILOG

CPLEX Optimizer [40] to solve problem (3.7).

The scenario considered herein is shown in Figure 3.4, where a massive

MIMO BS at coordinate (0, 0) is equipped with an 8× 8 UPA (𝑁t = 64). It services
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100 UEs which are randomly distributed inside two hotspots, each with a radius

of 15 m, located inside a 60° cell sector with 200 m of radius. The centers of

the hotspots are 100 m away from the BS and 30° apart. Also, we consider that

the UEs are moving at a speed of 0.833𝑚/𝑠, which is close to a typical walking

pedestrian speed [72]. Moreover, as in [8], [32], [53], [73], [74], we consider at

most 20% of the number of transmit antennas as the quantity of available RF

chains. Furthermore, the number of simulated UEs is limited by the complexity

to obtain the optimal solution, which is exponential.

Figure 3.4 – Scenario considering 2 hotspots with a determined angle 𝜃 between their
centers.
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We adopt the quasi deterministic radio channel generator (QuaDRiGa) urban

micro (UMi) line-of-sight (LOS) channel model [75] and assume the BS power

to be evenly divided among 125 RBs. However, in this section, we are assuming

only one RB available for transmission. Also, we are considering a simulation

time of 25 ms and 100 simulations rounds, the reason for considering only 25

ms is to analyze the performance of the algorithms at the end of this time in a

given TTI. The most relevant parameters used in our simulations are shown in

Table 4.1.

In order to support the considered assumption of low interference among

UEs of different clusters, in Figure 3.5 we applied the K-means clustering

algorithm to observe the behavior of the channel correlation among the UEs’

channels belonging to different clusters varying the angle 𝜃 where the center of

the clusters are disposed.

Therefore, applying K-means for varying angle 𝜃 (see Figure 3.5), one can see

that it clusters UEs with low correlated channels even for very close hotspots,

with correlation being inversely proportional to the angular distance between
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Table 3.1 – Simulation Parameters for Section 3.3

Parameter Value Unit

Simulation time 25 ms
Number of simulation rounds 100 –
Cell radius 200 m
Total transmit power 35 dBm
Noise figure 9 dB
Noise spectral density -174 dBm/Hz
Shadowing standard deviation 3.1 dB
Number of UEs 100 -
Number of clusters 2 -
UEs speed 0.833 m/s

Source: Created by the author.

hotspots. Thus, as mentioned before, our assumption that the interference

among clusters is negligible becomes increasingly true as the distance angle 𝜃

between clusters increases.

Figure 3.5 – Average channel correlation for UEs from two distinct clusters for differ-
ent values of 𝜃.
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In Figure 3.6 we evaluate the system data rate at the 50th percentile of the

cumulative distribution function (CDF) of system data rate, which is the sum

of the data rate in (2.12) of all selected UEs, for BB, BF and OC solutions when

the 𝛽 parameter in (3.6) varies from 0 to 1. We also vary the number of streams

from 2 to 3 per cluster.

As we can see, the selection of 𝛽 impacts the system performance and

different system data rate values are achieved as 𝛽 is varied. For example, we

can see that a better system performance can be achieved with 𝛽 = 0 (selection

of UEs with low channel correlation within a cluster) than 𝛽 = 1 (selection of

UEs with high channel gains). According to this, the spatial correlation cannot
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Figure 3.6 – System data rate at 50th percentile of BB, BF, and OC solutions.
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be completely neglected as with 𝛽 = 1 since this increases the intra-cluster

interference. However, this figure also shows that the optimal performance is

achieved for an intermediate value of 𝛽 (𝛽 = 0.6), showing that both channel

correlation and channel gain should be carefully taken into account to improve

the system performance. Note that we can serve more UEs by increasing the

number of streams from 2 to 3. However, the UE data rate decreases because

the intercluster interference increases. Finally, the transmission of multiple

streams per cluster using BB and BF can lead to a performance gain of 32%

and 35.5% over OC, respectively.

Figure 3.7 evaluates the average grouping metric defined in (3.6) using BB

and BF solutions versus the 𝛽 parameter varying from 0 to 1. We also vary the

number of streams from 2 to 3 per cluster.

Figure 3.7 – Metric average of our proposed solutions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

𝛽

M
et

ri
c

A
ve

ra
ge

BB 2 Streams
BF 2 Streams
BB 3 Streams
BF 3 Streams

Source: Created by the author.

In the whole beta range, the BF algorithm presents a close-to-optimal
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performance, especially when 𝛽 = 1. Basically, the problem (3.7) becomes

linear and, therefore, easier to solve when 𝛽 approaches the value 1. Also,

a smaller value for the metric means higher optimality. Another important

aspect to mention is that the optimization of the grouping metric presented in

(3.6) does not necessarily lead to capacity maximization. However, despite its

suboptimality, the employed grouping metric was shown to be well correlated

to the system capacity according to the presented simulation results.

3.4 Maximization of System Data Rate Considering Multiple

RBs, Services, and QoS Requirements

In this section we deal with the problem of maximizing the system data rate

considering multiple RBs, services, and QoS requirements. Motivated by the

higher problem complexity when compared to the one studied in Section 3.3,

the grouping and scheduling procedures of our proposed framework Figure 3.1

are done separately in this section.

3.4.1 Grouping Procedure

We start by explaining the step 2 (grouping procedure) of our proposed

framework in Figure 3.1 since the step 1 (clustering procedure) was explained

in Section 2.1. As in Section 3.3, we are going to deal with the challenge of

having an unpractical number of possible SDMA groupings. However, differently

from Section 3.3, in this section the goal consists in generating 𝑁𝑔 spatially

compatible groups to maximize the sum-rate and meet QoS constraints since

the RBs are allocated later to these SDMA groups. Therefore, instead of having

the scheduling step scan the whole search space to find the best SDMA group

per RB, the grouping step will reduce the number of possible SDMA groups

(𝑁𝑔) that are pre-selected with the objective of maximizing the sum rate.

Assuming that the inter-cluster interference is negligible thanks to cluster-

ing and precoding, a grouping problem is applied to each cluster separately

where a set of UEs is selected to form SDMA groups. In this selection process,

we choose spatially compatible UEs to keep the intra-cluster interference at

acceptable levels, if possible. One of the advantages of the grouping step is to

evaluate spatial compatibility, without computing the precoding vectors, as

described in Section 2.1, for all possible UEs groups. Moreover, our grouping

method exploits the channel hardening characteristic, which avoids the compu-

tation of SDMA groups for each RB. Therefore, by exploiting channel hardening

in the massive MIMO system, where the instantaneous channel gain of each

UE can be approximated by its mean in the frequency domain, we can reduce
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the complexity of this task [76].

Let us define the matrix 𝐷̃ ∈ C𝐽𝑐×𝑁t containing all UEs’ dominant eigenmodes

of a given cluster measured for the RB in the center of the bandwidth (middle

RB):

𝐷̃ =
[︁
𝑑̃1 𝑑̃2 . . . 𝑑̃𝐽𝑐

]︁
. (3.8)

where 𝑑𝑗 is the dominant eigenmode for the middle RB of the 𝑗th UE from

cluster 𝑐, which index was dropped out for simplicity sake.

Consider 𝑎̃ ∈ R𝐽𝑐×1 as the attenuation vector containing the inverse of the

dominant eigenvalue (channel gain) for the middle RB of all 𝐽𝑐 UEs from cluster

𝑐. Then, we can express 𝑎̃ using 𝑑̃ as:

𝑎̃ =
[︁
‖𝑑̃1‖−2

2 ‖𝑑̃2‖−2
2 . . . ‖𝑑̃𝐽𝑐‖−2

2

]︁T
. (3.9)

Due to the channel hardening effect that allows massive MIMO to use

average channel gains and using (3.8) and (3.9), we can write the spatial

correlation matrix 𝐶 ∈ R𝐽𝑐×𝐽𝑐 for the middle RB as [77]

𝐶 =

⃒⃒⃒⃒√︁
diag(𝑎)𝐷̃𝐷̃H

√︀
diag(𝑎̃)

⃒⃒⃒⃒
. (3.10)

Therefore, using (3.10) and considering 𝑁g as the number of groups to be

generated as output of the grouping step, we can define the following block

diagonal spatial correlation matrix 𝐶̂ ∈ R𝐽𝑐𝑁g×𝐽𝑐𝑁g as

𝐶̂ = 𝐼𝑁g ⊗𝐶, (3.11)

where 𝐼𝑁𝑔 is the 𝑁𝑔 ×𝑁𝑔 identity matrix and ⊗ is the kronecker product.

Analogously, let us define the following attenuation vector 𝑎̂ ∈ R𝐽𝑐𝑁g×1 as

𝑎̂ = 1𝑁g ⊗ 𝑎̃, (3.12)

where 1𝑁g is the 𝑁g × 1 vector composed of 1’s and 𝑎̂ is a concatenation of

attenuation vectors from all UEs of each SDMA group. Therefore, the block

diagonal spatial correlation matrix 𝐶̂ and the stacked vector of channel gains

𝑎̂ refers to 𝑁g independent SDMA groups.

Consider the binary selection vector

𝑢 =
[︁
𝑢1 𝑢2 . . . 𝑢𝐽𝑐·𝑁g

]︁T
, (3.13)

which selects UEs for each SDMA group, where 𝑢𝑖 is equal to 1 when the 𝑘th

UE of a given cluster is chosen to compose SDMA group 𝑔 with 𝑖 = 𝑔 · 𝑁g + 𝑘.
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We can formulate a convex combination that takes into account both the total

spatial correlation and channel gains of all SDMA groups. Such a combination

is defined as

𝑚(Π̂) = (1− 𝛽)
𝑢T𝐶̂𝑢

‖𝐶̂‖F
+ 𝛽

𝑎̂T𝑢

‖𝑎̂‖F
, (3.14)

where the normalization factors
1

‖𝐶̂‖F
and

1

‖𝑎̂‖F
are responsible to balance 𝐶̂

and 𝑎̂, i.e., to make the 𝛽 parameter unbiased [24].

Let us define the matrix 𝑇 ∈ {0, 1}𝐽𝑐×𝐽𝑐𝑁g as

𝑇 = 1T
𝑁g
⊗ 𝐼𝐽𝑐 , (3.15)

where 𝑇 is a matrix that we introduce to cope with fairness constraints of the

SDMA groups. Indeed each row of the matrix 𝑇 is associated to UE 𝑗 and all

SDMA groups, and it will be used to guarantee that each UE will be present in

at least one of the 𝑁g generated SDMA groups.

Let us define the following matrix 𝑉𝑖 ∈ {0, 1}𝐽𝑐𝑁g×𝐽𝑐𝑁g

𝑉𝑖 = 𝐺𝑖 ⊗ 𝐼𝐽𝑐 ,∀𝑖 ∈ {1, 𝑁g}, (3.16)

where 𝐺𝑖 ∈ {0, 1}𝑁g×𝑁g is a diagonal matrix whose unique non-zero element

corresponds to the 𝑖th element in the main diagonal and its value is 1; and 𝑉𝑖 is

a matrix introduced to guarantee the UE diversity in the SDMA groups as it

will be explained later, which helps to satisfy the QoS requirements.

Using the definitions above, the multiple groups and fairness optimization

problem, which should be solved separately for each cluster, can be formulated

as

𝑢⋆ = argmin
𝑢

{︃
(1− 𝛽)

𝑢T𝐶̂𝑢

‖𝐶̂‖F
+ 𝛽

𝑎̂T𝑢

‖𝑎̂‖F

}︃
(3.17a)

subject to:

(𝐼𝑁g ⊗ 1T
𝐽𝑐)𝑢 = 1𝑁g𝐽𝑐, (3.17b)

𝑇 𝑢 ≥ 1𝑁g

⌊︂
𝑁g

𝐽𝑐

⌋︂
, (3.17c)

1𝑁g𝐽𝑐(𝑉𝑖 − 𝑉𝑔)𝑢 ̸= 0, ∀𝑖, 𝑔 ∈ {1, 𝑁g}, and 𝑖 ̸= 𝑔, (3.17d)

𝑢 ∈ {0, 1}𝐽𝑐𝑁g , (3.17e)

where 𝑢⋆ is the solution containing the best 𝑁g SDMA groups containing 𝐽𝑐

UEs of a given cluster that have low total spatial correlation and low total

channel attenuation, depending on the chosen 𝛽. Constraint (3.17b) ensures
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that only 𝐽𝑐 UEs per group are selected, totalizing a number of 𝑁g𝐽𝑐 UEs

selected per cluster assuming all SDMA groups. Constraint (3.17c) ensures

that every UE is present in at least
⌊︁
𝑁g

𝐽𝑐

⌋︁
SDMA groups, i.e., we impose a fairness

constraint among UEs. Constraint (3.17d) ensures that we do not form groups

containing the same UEs, i.e., we impose a variability constraint among SDMA

groups. The last constraint assures that 𝑢 is binary. Problem (3.17) can be

solved by exhaustive search, which consists in enumerating all the possible

SDMA group compositions and choosing the best one. However, this method

has impractical computational complexity. Therefore, efficient suboptimal

algorithms are required, as presented in the following.

3.4.2 Grouping Procedure Proposed Algorithm

The proposed low-complexity solution for the grouping part is presented in

Algorithm 3. The main idea here is to select UEs from each cluster to compose

all 𝑁g SDMA groups that will be used in the scheduling part. In lines 7 to 13,

the proposed algorithm firstly selects an initial UE in order to calculate the

correlation metric 𝑚(Π̂). The chosen UE is the one with highest eigenmode

gain. This selected UE will have a low priority to be chosen as the initial UE of

other SDMA groups to fulfill constraint (3.17c). After that, in lines 14 to 18, the

algorithm employs a greedy search to find the UE which can form a possible

and different combination (constraint (3.17d)) that minimizes the metric 𝑚(Π̂)

when the UE is added to the group. Thus, the metric is calculated for each UE

that does not belong to the SDMA group formed by the already selected UEs

of the cluster. Then, the same procedure is repeated until 𝐽𝑐 UEs associated

with each cluster are selected, as to respect constraint (3.17b). In line 19, we

remove the selected combination from the set of all possible combinations. In

lines 20 to 24, if a given UE is already part of all of its possible SDMA groups,

then this UE cannot be chosen to compose another SDMA group. These steps

are repeated until 𝑁g groups are formed for each cluster. The pseudo-code of

the proposed algorithm is presented in Algorithm 3.

In the following we calculate the worst-case computational complexity of

Algorithm 3. It sorts the UEs within a cluster based on the dominant eigen-

mode. Note that, in the worst-case a simple sorting of the 𝐽𝑐 UEs can have a

complexity of 𝒪(𝐽𝑐 log(𝐽𝑐)) per cluster. Then, Algorithm 3 selects the first UE,

i.e., the UE with highest dominant eigenmode. Note that, 𝑁C𝑁g selections are

done. Then, the selected UE is excluded from the search for the next UE to

compose the SDMA group. If we need to select more than one UE per cluster,

i.e., if the number of streams per cluster is greater than one, the algorithm

chooses another UE that minimizes the compatibility metric in (3.14). The
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Algorithm 3 Proposed algorithm for grouping

1: Define Π̂𝑐,𝑔 as the set of UEs from cluster 𝑐 that belongs to SDMA group 𝑔
2: for 𝑐 = 1 to 𝑐 = 𝑁C do
3: Define 𝒥𝑐 as the set of UEs belonging to cluster 𝑐
4: Sort 𝒥𝑐 in descending order of dominant eigenmode
5: Define 𝒜 as the set with all possible combinations of 𝐽𝑐 UEs ◁ Constraint (3.17d)

taken from 𝒥𝑐
6: for 𝑔 = 1 until 𝑔 = 𝑁g do
7: Π̂ = ∅
8: Define 𝑢 as the binary selection vector for group 𝑔
9: 𝑢← 0𝐽𝑐

10: 𝑗⋆ ← first element of 𝒥𝑐 ◁ Constraint (3.17c)
11: Put 𝑗⋆ in the last position in the set 𝒥𝑐 ◁ Constraint (3.17c)
12: 𝑢𝑗⋆ ← 1

13: Π̂← {𝑗⋆}
14: while 1T

𝐽𝑐
𝑢 ̸= 𝐽𝑐 do ◁ Constraints (3.17b)

15: 𝑗⋆ ← argmin
𝑗

{︁
𝑚(Π̂)

}︁
,∀Π̂ ⊆ 𝒜

16: 𝑢𝑗⋆ ← 1

17: Π̂← Π̂ ∪ {𝑗⋆}
18: end while
19: 𝒜 ← 𝒜 ∖ {Π̂}
20: for each UE 𝑗 in Π̂ do
21: if 𝑗 * 𝒜 then
22: 𝒥𝑐 ← 𝒥𝑐 ∖ {𝑗}
23: end if
24: end for
25: Π̂𝑐,𝑔 ← Π̂𝑐,𝑔 ∪ Π̂
26: end for
27: end for
28: return Π̂

process is repeated until the number of UEs selected per cluster is equal to the

number of streams per cluster. Based on this, the total number of comparisons

considering all the clusters and SDMA groups are 𝑁C𝑁g
∑︀𝐽𝑐−1

𝑖=0 (𝐽𝑐− 𝑖). Therefore,

the algorithm worst-case complexity is 𝒪(𝑁C𝑁g(1 +
∑︀𝐽𝑐−1

𝑖=0 (𝐽𝑐 − 𝑖))), which is

polynomial. Note that this solution has a very low complexity compared to

solvers based on the well-known BB methods that have exponential complexity

[71].

3.4.3 Scheduling Procedure Optimal Solution

This section presents the maximization of total data rate considering QoS

and a multiservice scenario. This problem has been already studied in [70] for a

conventional MIMO system. However, in [70], the authors optimize the system

performance by evaluating the possible transmit data rates considering all pos-

sible combinations of SDMA groups, as shown in (3.1), which is impracticable

in real systems, especially with massive MIMO.

Let us define some relevant variables. Assume that 𝑂 ∈ {0, 1}𝑁g×𝑁RB is an
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assignment matrix whose element 𝑜𝑔,𝑛 assumes the value 1 if the RB 𝑛 is

assigned to the SDMA group 𝑔 and 0 otherwise. Let 𝑅 ∈ R𝑁g×𝐽×𝑁RB be a tensor

whose element 𝑟𝑔,𝑗,𝑛 is the Shannon capacity of the UE 𝑗 in RB 𝑛 if UE 𝑗 belongs

to SDMA group 𝑔 and 0 otherwise. Let us define the vector 𝜌 ∈ {0, 1}𝐽×1 as a

binary selection vector whose element 𝜌𝑗 assumes the value 1 if UE 𝑗 is selected

to be satisfied and 0 otherwise. The vector 𝑙 ∈ R𝐽×1 is defined as a vector whose

element 𝑙𝑗 is the required data rate necessary to satisfy UE 𝑗. Note that, as

in [70], we map the long-term data rate requirements as instantaneous data

rate requirements. The minimum satisfaction constraint for each service is

defined as a vector 𝑤 ∈ Z𝑆×1, whose element 𝑤𝑠 is the minimum number of UEs

from service 𝑠 that should be satisfied. Note that, we sequentially dispose the

index of UEs in 𝑟𝑔,𝑗,𝑛 and in 𝑙𝑗 according to the service, i.e, the UEs 𝑗 = 𝐽𝑠−1 + 1

to 𝑗 = 𝐽𝑠 are from service 𝑠, where 𝐽𝑠 is the number of UEs from service 𝑠.

According to the previous considerations, the resource assignment problem

can be formulated as the following optimization problem:

argmax {𝑜,𝜌}

(︃∑︁
𝑔∈𝒢

∑︁
𝑛∈𝒩

∑︁
𝑗∈𝒥

𝑜𝑔,𝑛𝑟𝑔,𝑗,𝑛

)︃
, (3.18a)

subject to: ∑︁
𝑔∈𝒢

𝑜𝑔,𝑛 = 1,∀𝑛 ∈ 𝒩 , (3.18b)∑︁
𝑔∈𝒢

∑︁
𝑛∈𝒩

𝑜𝑔,𝑛 𝑟𝑔,𝑗,𝑛 ≥ 𝜌𝑗 𝑙𝑗,∀𝑗 ∈ 𝒥 , (3.18c)∑︁
𝑗∈𝒥𝑠

𝜌𝑗 ≥ 𝑤𝑠,∀𝑠 ∈ 𝒮, (3.18d)

𝑜𝑔,𝑛 ∈ {0, 1},∀𝑔 ∈ 𝒢 and ∀𝑛 ∈ 𝒩 , (3.18e)

𝜌𝑗 ∈ {0, 1},∀𝑗 ∈ 𝒥 . (3.18f)

The objective function shown in (3.18a) is the maximization of the total

downlink data rate transmitted by the BS. The first constraint (3.18b) assures

that an RB will not be shared by different SDMA groups. Constraints (3.18c)

and (3.18d) state that a minimum number of UEs should be satisfied for each

service.

Problem (3.18) is a combinatorial optimization problem with linear con-

straints. Hence, depending on the problem dimension, its optimal solution has

prohibitive computational complexity [70]. In order to write this problem in a

compact form we will represent the problem variables and inputs in vector and
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matrix forms. Thus, let us define the matrix 𝑅̃ ∈ Z𝐽×𝑁g𝑁RB as follows

𝑅̃ =

⎡⎢⎢⎢⎢⎣
𝑟1,1,1 𝑟2,1,1 . . . 𝑟𝑁g,1,1 𝑟1,1,2 . . . 𝑟𝑁g,1,𝑁RB

𝑟1,2,1 𝑟2,2,1 . . . 𝑟𝑁g,2,1 𝑟1,2,2 . . . 𝑟𝑁g,2,𝑁RB

...
... . . . ...

... . . . ...

𝑟1,𝐽,1 𝑟2,𝐽,1 . . . 𝑟𝑁g,𝐽,1 𝑟1,𝐽,2 . . . 𝑟𝑁g,𝐽,𝑁RB

⎤⎥⎥⎥⎥⎦ .

Therefore, we can rewrite problem (3.18) as

argmax {𝑂,𝜌}
(︁
1T
𝐽 𝑅̃ vec(𝑂)

)︁
, (3.19a)

subject to:

(1T
𝑁g
⊗ 𝐼𝑁RB) vec(𝑂) = 1𝑁RB , (3.19b)

𝑅̃ vec(𝑂) ≥ diag(𝑙)𝜌, (3.19c)

(1𝐽𝑠 ⊗ 𝐼𝑆)
T𝜌 ≥ 𝑤, (3.19d)

𝑂 ∈ {0, 1}𝑁g×𝑁RB , (3.19e)

𝜌 ∈ {0, 1}𝐽 , (3.19f)

where the operator vec (·) maps a matrix to a vector by stacking its columns on

top of each other and returns a column vector. Therefore, the original problem

is recast as a standard integer linear problem (ILP) and can be solved using BB

methods.

In the following, we calculate the worst-case computational complexity to

obtain the optimal solution of problem (3.19). For an arbitrary number of integer

variables 𝜐, the number of linear programming subproblems to be solved is at

least (
√
2)𝜐 [71]. Since in problem (3.19) there are 𝑁g𝑁RB + 𝐽 integer variables

and 𝑁RB + 𝐽 + 𝑆 constraints, and by retaining only the high order operations,

the worst-case computational complexity for problem (3.19) is 𝑂
(︁√

2
(𝑁g𝑁RB+𝐽)

)︁
.

Motivated by this exponential computational complexity, we present in the next

section a low-complexity suboptimal solution.

3.4.4 Scheduling Procedure Low-Complexity Solution

In this section, we propose a low-complexity heuristic algorithm for the

scheduling, which is divided into two parts: unconstrained maximization and

reallocation. The unconstrained maximization part is responsible for allocating

the RBs into groups to maximize the throughput without taking into account

the QoS constraints. The reallocation part is responsible for distributing the

RBs that have been assigned in the previous part to another group to satisfy

the QoS constraints. Flowcharts describing unconstrained maximization and

reallocation parts are shown in Figures 3.8 and 3.9, respectively.
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Before initializing our proposed algorithm, we consider that the achievable

data rates of all UEs on all resources when belonging to any SDMA group

formed by the grouping problem (3.17) are known. One way to do this is by

calculating the precoders (as explained in Section 2.2), then the SINR and the

data rate according to (2.12). In the unconstrained maximization part, the basic

idea is to have a good initial solution that gives us a capacity upper bound.

Firstly, in step 1, we define the set of available UEs composed of all UEs that is

used along the algorithm. In step 2, we assign the RBs to the SDMA groups

with the highest data rate (maximum rate allocation). After that, we define a

set with the UEs that have fulfilled their data rate requirements and another

set with the ones that are still unsatisfied. If the minimum number of satisfied

UEs for all services is fulfilled (according to the constraint (3.18d)), we have

found the optimum solution to problem (3.18). However, in general, only a few

groups get assigned most of the RBs due to the unfairness of the employed

assignment.

If the satisfaction constraint for any service is not fulfilled, a UE of the

available UE set will be disregarded. By disregarding a UE, we mean it will not

contribute to the reallocation metric (3.21) at the current TTI, i.e., the algorithm

will not try to satisfy this UE. The criterion to select the UE 𝑗⋆ to be disregarded

is given by

𝑗⋆ = argmin
𝑗∈𝒥

(︃∑︀
𝑔∈𝒢

∑︀
𝑛∈𝒩

Γ𝑔,𝑗,𝑛

𝜅𝑗 ·𝑁RB

)︃
𝑙𝑗

, (3.20)

where Γ𝑔,𝑗,𝑛 is the SINR of the UE 𝑗 in RB 𝑛 belonging to the SDMA group 𝑔, 𝜅𝑗

is the number of SDMA groups that UE 𝑗 belongs to and 𝑁RB is the number

of available RBs. The adopted criterion to disregard a UE is quite reasonable:

we disregard the UE that requires, on average, more RBs to be satisfied. The

selected UE is taken out of the available UE set. After that, if the SDMA groups

that contain the UE 𝑗⋆ have only disregarded UEs, then these groups are also

disregarded.

The next step is to check whether the service of the UE 𝑗⋆, chosen using

(3.20), can have another UE disregarded without infringing the minimum

number of UEs necessary to satisfy the QoS constraint (3.18d). If so, we

perform the maximum rate allocation considering the remaining SDMA groups.

Otherwise, no UEs from this service will be disregarded anymore and all the

UEs from this service are taken out of the available UE set. This procedure

is repeated until we find a feasible solution, or no UE can be disregarded

anymore.
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Finally, we check if at least one UE is satisfied. If so, we define the re-

ceiver set ℛ and available resource set 𝒟. The receiver set is composed of the

unsatisfied UEs, which have to receive RBs from the donors to satisfy their

data rate requirements, where the donors are the satisfied UEs, which can

donate/share RBs to/with unsatisfied UEs. Finally, the available resource set

is composed of all RBs that are assigned to UEs of the donors, and which can

be donated/shared to/with UEs of the receiver set. In case there is no satisfied

UE after executing the first part, the proposed algorithm is not able to find

a feasible solution, i.e., the algorithm is not able to satisfy the constraints of

problem (3.18).

Since the unconstrained maximization part does not deal with QoS guar-

antees, it is necessary to reallocate the RBs that were previously allocated in

order to satisfy the QoS requirements. Therefore, in the reallocation part, we

exchange RBs among SDMA groups, changing the initial allocation provided by

the unconstrained maximization part, to satisfy the UEs from the receiver set.

We start by creating the set 𝒢 that is composed of all SDMA groups that

contain the UE 𝑗⋆, which is the most difficult UE to be satisfied from receiver set

ℛ. This UE can be found according to (3.20). The main motivation for choosing

the most difficult UE to be served firstly is to assign the minimum number of

RBs to satisfy the UEs in an unfavorable situation and assign the remaining

RBs to UEs with better channel conditions. After that, we must identify the

SDMA groups and RB pairs that are candidate to be chosen in the reallocation

procedure. Therefore, the next step is to calculate the number of UEs that each

pair of SDMA group from 𝒢 and available RB from 𝒟 can satisfy. Then, we can

compose the set ℱ containing the pairs of 𝒢 and 𝒟 that maximize the number

of satisfied UEs.

The step 3 is to define a metric to reallocate an RB to the SDMA group that

leads the receivers (ℛ) to satisfaction, while not causing a high SE loss. This

can be achieved by the following metric

𝜙𝑔,𝑛 =

⎛⎜⎜⎝
∑︀

𝑗∈ℛ𝑗⋆

|𝑙𝑗 − (𝑙̂𝑗 + 𝑟𝑔,𝑗,𝑛 − 𝑟𝑔′,𝑗,𝑛)|∑︀
𝑗∈ℛ𝑗⋆

|𝑙𝑗 − 𝑙̂𝑗|

⎞⎟⎟⎠ Φ𝑐𝑢𝑟

Φ𝑛𝑒𝑤
𝑔,𝑛 · 𝜋𝑔

, (3.21)

where ℛ𝑗⋆ is the set of receivers that belong to the SDMA group 𝑔 of the chosen

UE 𝑗⋆, 𝑙̂𝑗 consists in the required data rate of UE 𝑗 according to the current

resource assignment, Φ𝑐𝑢𝑟 is the sum of the data rate achieved by all UEs in

all RBs according to the current resource assignment, Φ𝑛𝑒𝑤
𝑔,𝑛 is the sum of the

data rate when the SDMA group 𝑔 receives via reallocation the RB 𝑛 without
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Figure 3.8 – Unconstrained maximization part.
Part 1

Step 1: Available UE and
SDMA group sets are

composed of all UE and
SDMA groups, respectively
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Step 4: Is the satisfac-
tion constraint full-
filed to all services?

Step 5:
Feasible
solution
found

Step 6: Take out from the avail-
able UE set the UE with poorest

channel quality and higher
requirement, according to (3.20)

Step 7: Take out from the
available SDMA groups set the

SDMA groups that are only
composed by the disregarded UE

Step 8: Can another UE
be disregarded from the
same service of this UE?

Step 9: Take out from
the avaliable UE set all
UEs from this service
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able UE set empty?
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Source: Created by the author.
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modifying the assignment on the other RBs, and 𝜋𝑔 is the number of receivers

in SDMA group 𝑔. This is an adaptation of the reallocation metric used in [70].

We consider that 𝑔′ is the SDMA group that was chosen to RB 𝑛 in the

first part of the proposed solution (unconstrained maximization). Also, 𝑟𝑔′,𝑗,𝑛
is the data rate of UE 𝑗 on RB 𝑛 when present in SDMA group 𝑔′. Note that

Φ𝑛𝑒𝑤
𝑔,𝑛 ≤ Φ𝑐𝑢𝑟 since we begin with the maximum rate solution in the unconstrained

maximization part of our solution and to satisfy UEs we lose spectral efficiency.

The SDMA group and RB chosen in the reallocation part are those that minimize

the reallocation metric (3.21).

The step 4 is to check whether the reallocation would lead any UE from

the donor SDMA group to become unsatisfied. If so, the reallocation is not

performed, and the chosen RB is removed from the available RB set and cannot

be chosen anymore. Otherwise, the reallocation is performed, and the UEs’

data rates are updated. Then, the algorithm checks whether any receiver has

become satisfied after reallocation. If so, these UEs are taken out from the

receiver set. After that, the RB that was assigned to a new SDMA group is

removed from the available RB set. Then, it is checked whether the UEs of all

services became satisfied. If so, the algorithm ends, and a feasible solution is

found. Otherwise, the reallocation process should continue. An outage event

happens when there still exist UEs in the receiver set, and there is no RB for

reallocation.

In the following, we present the computational complexity analysis of the

proposed algorithm. Part 1 of the proposed solution in Figure 3.8 is clearly

dominated by the maximum rate allocation, which needs 𝑁RB𝑁g comparisons.

Part 2 is dominated by the calculation of the reallocation metric in (3.21), which

is calculated for every available RB and group. This is repeated until the RB set

becomes empty. Therefore, as the reallocation metric needs to be calculated

for each available RB and UE, the worst-case computational complexity is

𝒪(𝑁RB𝑁g + 𝑁2
RB𝑁g). Thus, by retaining only the high order operations, the

worst-case computational complexity is 𝒪(𝑁2
RB𝑁g).

3.4.5 Performance Evaluation

In this section, we evaluate step-by-step the proposed framework. In Sec-

tion 3.4.5.1 we evaluate the step 1 using the K-means algorithm. In Sec-

tion 3.4.5.2 we evaluate the step 2 comparing the proposed grouping (G-PROP)

algorithm against the optimal grouping (G-OPT) solution, considering that the

K-means algorithm was utilized in step 1. In Section 3.4.5.3 we evaluate the

step 3 comparing the proposed scheduling (S-PROP) algorithm presented in
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Figure 3.9 – Reallocation part.
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Step 1: Set 𝒢 with the SDMA groups
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Source: Created by the author.

Section 3.4.4 against the optimal scheduling (S-OPT) solution obtained using

the CPLEX solver [40] and against an adaptation of the JSM algorithm [41].

The JSM algorithm [41] determines the UEs’ priority using the derivative of a

sigmoidal function. Since the JSM solution needs to estimate the instantaneous

data rate, we estimate it by using the dominant eigenvalue and eigenvector

that are the CSI available for the other algorithms. Furthermore, in order to

deal with the interference among clusters and keep fairness when comparing

with our proposed framework, the JSM algorithm is employed after step 1.
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The simulation scenario consists in a UMi LOS [75] single cell system

with an 8 × 8 UPA (𝑁t = 64). We also assume that the system works with a

bandwidth of 100 MHz, a frequency of 28 GHz and that the UEs are equipped

with a single-antenna2. Based on [78, Table 2], we generate a set of 125 RBs,

each composed of 12 equally spaced subcarriers of 60 kHz. Moreover, each

frame has 10 subframes carrying 14 symbols each and the TTI duration is

0.25 ms. The considered channel model is the 3-dimensional QuaDRiGa [75].

We consider that a set of 40 UEs is equally divided into two groups (forming

two circular hotspots) with 15 m of radius. The UEs are uniformly disposed

inside hotspots, which are linearly distributed in a 60∘ cell sector3. The total

power is fixed and equal power allocation (EPA) among RBs and among spatial

subchannels is employed. Since we are using hybrid precoding, as many other

works in literature [8], [32], [53], [73], [74], we are considering the number of

available RF chains as at most 10% of the number of BS antennas. Also, we are

considering that the BS serves 2 or 3 UEs per RB and cluster. Therefore, the

BS can simultaneously serve more than 100 UEs since we are considering in

our simulations 2 clusters and 25 RBs. Furthermore, the number of simulated

UEs is limited by the complexity to obtain the optimal solution, which has an

exponential computational complexity. Also, we are considering a simulation

time of 25 ms and 100 simulations rounds, the reason for considering only 25

ms is to analyze the performance of the algorithms at the end of this time in a

given TTI. Other relevant simulation parameters are listed in Table 3.2.

Table 3.2 – Simulation parameters for Section 3.4.
Parameter Value Unit

Simulation time 25 ms
Number of TTIs 100 –
Number of simulation rounds 2000 –
Cell radius 200 m
Total transmit power 35 dBm
Noise figure 9 dB
Noise spectral density -174 dBm/Hz
Shadowing standard deviation 3.1 dB
Number of UEs 40 -
Number of Clusters 2 -
UEs speed 3 km/h
Total Number of RBs 125 -
Used Number of RBs 25 -
Number of services 2 -
Number of UEs per service 20 -

Source: Created by the author.

2 The study of UEs with more than one antenna is out of the scope of this thesis, leaving it
as the perspective of study for future works.

3 Note that a UPA with 64 antenna elements radiating with the 3rd generation partnership
project (3GPP) antenna model has an effective coverage of a 60∘ sector.
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Note that, in this chapter, firstly the BS create the set of possible SDMA

group as presented in Section 3.4.1. Secondly, the UEs feed back their CSI

using the analog precoders (2.6) and eigenvectors of equivalent channel (2.3)

presented in Section 2.2. After that, the digital precoder (2.9) is computed

following Section 2.2 for each set of SDMA group. Finally, the UEs are scheduled

using the algorithm presented in Section 3.4.4, and the data is sent to the

scheduled UEs using (2.12). Therefore, this solution reduces the signaling

overhead since it requires only to calculate the digital precoders of the smaller

set of SDMA groups computed previously instead of all possible SDMA groups.

3.4.5.1 K-means Algorithm Evaluation (Step 1)

In Figure 3.10 we evaluate the effectiveness of the employed clustering (step

1 of the proposed framework) in the proposed scenario with two hotspots. Let

us clarify the difference between the terms hotspot and group of UEs: a hotspot

is a group of UEs in a confined area, and the cluster is the grouping done by

the clustering step, which can even select UEs of different hotspots. For this

analysis, basically, we increase the angle between the line segments from the BS

to the center of the two hotspots. With this, the channel among UEs of different

hotspots tends to be more uncorrelated. As the angle increases, we expect that

the probability of the clustering algorithm to group UEs of different hotspots

decreases. We define the expected clustering difference as the probability of

clustering together UEs that do not belong to the same hotspot. Focusing on

performance, we can see that as the angle between hotspots increases, the

formed clusters get closer to the given physical clusters (hotspots).

In Figure 3.11 we evaluate the step 1 (clustering step) of our algorithm

by means of the mean-squared error between the centroids formed in each

iteration and those formed when the stop criterion is met (clusters do not

change or a maximum number of iterations is reached). We can see that the

mean-squared error decays very fast over the iterations and converges in 8

iterations. This happens because the UEs are already disposed in a defined

number of hotspots and an angle of 15∘ was assumed between clusters, which

helps the algorithm to converge. Therefore, from the analyses provided in this

subsection, the K-means algorithm can reach a good clusterization with a small

number of iterations in the considered scenarios.

3.4.5.2 Grouping Algorithm Evaluation (Step 2)

In this section we evaluate the step 2 (grouping step) in terms of the system

data rate. After this step, the RBs are allocated to the SDMA groups aiming at

maximizing the system data rate. For the sake of comparison, we implemented
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Figure 3.10 – Expected clustering difference of K-means clustering for different
hotspots dispositions.
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Figure 3.11 – Convergence of K-means clustering.
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the optimal SDMA grouping solution (G-OPT), that is obtained by enumerating

all the possible SDMA group compositions and choosing the best one for each

RB. Note that, due to the complexity to obtain the G-OPT solution, we had

to reduce the number of SDMA groups of the problem. For this reason, we

decided to reduce the number of UEs per cluster. For example, considering

20 UEs in each cluster, 2 clusters and 2 UEs served per cluster, the number

of possible SDMA groups is 36, 100, which is impracticable. Motivated by this,

the performance analysis of the G-PROP algorithm against the G-OPT solution

considers a reduced scenario with 2 clusters each one containing 10 UEs.

In Figure 3.12, we evaluate the step 2 (grouping step) in terms of total

system data rate for the G-PROP and G-OPT solution for a scenario considering

2 UEs selected per cluster when the required number of SDMA groups 𝑁𝑔
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varies. As we can see, the impact of 𝛽 on the system performance decreases

as the number of SDMA groups 𝑁𝑔 increases. This behavior happens due to

the fairness constraint (3.18d), which avoids aiming only at maximizing the

system data rate, i.e., the algorithm tries to select SDMA groups that include

in a balanced way all UEs and not only groups that maximize the SE. Focusing

on performance, selecting the best 𝛽 of each curve, the G-PROP algorithm

compared with the G-OPT solution has a loss of 21%, 8% and 6% for 𝑁𝑔 = 1,

𝑁𝑔 = 10 and 𝑁𝑔 = 40, respectively.

Figure 3.12 – System data rate of G-PROP and G-OPT solutions for a scenario consid-
ering 2 UEs selected per cluster and different numbers of SDMA groups.
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In Figure 3.13, we evaluate the step 2 (grouping step) in terms of total

system capacity for the G-PROP and G-OPT solutions for a scenario considering

3 UEs selected per cluster when the required number of SDMA groups 𝑁𝑔

varies. Note that, as we increased the number of UEs selected per cluster,

the setting of 𝛽 parameter should be performed more carefully than in the

previous scenario (considering 2 UEs selected per cluster). Therefore, differently

of Figure 3.12, the impact of 𝛽 on the system performance can be seen even

considering 40 SDMA groups. Focusing on performance, selecting the best

𝛽 of each curve, the G-PROP algorithm compared with the G-OPT solution

has a loss of 51%, 20% and 14% for 𝑁𝑔 = 1, 𝑁𝑔 = 10 and 𝑁𝑔 = 40, respectively.

The reason for the increase in the performance gap between solutions is the

increase in the complexity (search space) of the problem, since the search space

grows combinatorially with the number of selected UEs per cluster.

The total number of possible SDMA groups evaluated by G-OPT are 2, 025

and 14, 400 for the scenarios considering 10 UEs in each cluster serving 2 and 3

UEs per cluster, respectively. Therefore, from the analyses of the results, the G-

PROP algorithm achieves good performance even when a very small percentage
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Figure 3.13 – System data rate of G-PROP and G-OPT solutions for a scenario consid-
ering 3 UEs selected per cluster and different number of SDMA groups.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
450

500

550

600

650

700

750

800

850

900

𝛽

S
ys

te
m

d
at

a
ra

te
(M

b
p
s)

G-PROP 01 Group G-OPT
G-PROP 10 Groups G-PROP 40 Groups

Source: Created by the author.

of the possible SDMA compositions is considered. Furthermore, as shown

in Section 3.4.2, the computational complexity of the G-PROP suboptimal

algorithm is polynomial and much lower than that of the G-OPT solution, thus

offering a good performance-complexity trade-off.

3.4.5.3 Scheduling Algorithm Evaluation (Step 3)

In this section we evaluate the proposed step 3 (scheduling step) considering

40 UEs in the system, 2 clusters, 2 UEs selected per cluster, and 25 available RBs

which makes possible to serve all 40 UEs simultaneously. Note that, the total

number of scheduled UEs in an RB (4 in this section) is limited by the number

of available RF chains. In all figures of this section, the 𝛽 parameter in (3.14)

varies from 0 to 1. We consider three performance metrics: the total system

data rate, the outage rate and the average number of satisfied UEs. Note that,

only solutions that are feasible for all 𝛽 are utilized. An outage event happens

when the problem constraints cannot be fulfilled by the algorithm. Note that,

the problem itself can be infeasible, depending on the UEs’ positions, channel

gains, and data rate requirements. Thus, we can define the outage rate as the

ratio between the number of outage events and the total number of simulation

rounds. Therefore, this performance metric indicates if the algorithms are

capable of finding a feasible solution to the studied problem. The third and

final metric is the ratio between the total number of satisfied UEs and the total

number of UEs in the system.

In Figure 3.14, we evaluate the step 3 (scheduling step) in terms of outage

rate and the total system data rate for the S-PROP, JSM and S-OPT solutions

when the number of groups 𝑁g varies. As we can see, the selection of 𝛽 impacts
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Figure 3.14 – System outage and capacity of our proposed and OPT solutions for
a scenario considering 2 UEs selected per cluster, requirement of 5 Mbps per UE,
requirements of 100% of satisfied UEs and different number of SDMA groups.
(a) Outage.
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(b) System capacity at 50th percentile.
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on the system performance achieving different system data rate and outage

values as 𝛽 varies. For example, we can see that the lowest outage rate can be

achieved with 𝛽 = 0 (selection of UEs with lowest channel correlation within

a cluster). This behavior occurs for the rest of the figures in this section.

According to this, the spatial correlation cannot be neglected, e.g., 𝛽 = 1, since

this increases the intra-cluster interference. However, this figure also shows

that the best system outage and data rate are achieved for values of 𝛽 = 0

and 𝛽 = 0.5, respectively, showing that both channel correlation and channel

gain should be carefully taken into account, depending on the performance

objectives of the system. Moreover, the performance loss of the JSM algorithm

in comparison with other solutions is due to the fact that this solution does

not take into account the intra-cluster interference. This behavior occurs for

the rest of the figures in this section.

As we can see in Figure 3.14a, it is possible to reduce the outage rate by

increasing the number of candidate SDMA groups. Focusing on the relative

performance among algorithms we can see that, when the 𝛽 parameter is close

to 0, the S-PROP algorithm performs near optimally for 50 and 60 groups, while a

higher performance loss can be seen for 40 SDMA groups. Therefore, depending

on the number 𝑁g of SDMA groups, the grouping procedure can return a

solution where the constraint (3.18d) might be unfeasible or hard to be solved,

i.e., as the number of SDMA groups increases the QoS constraints become

easier to be fulfilled. However, to increase the number of SDMA groups leads to

an increase in the search space for the scheduling step and, consequently, the

complexity of both scheduling and SDMA grouping procedures increases. Thus,

as the number of SDMA groups increases, a trade-off between complexity and

performance takes place. Another observation is that we consider only a small
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Figure 3.15 – System outage and satisfaction of our proposed and OPT solutions for
a scenario considering 2 UEs selected per cluster, 𝑁g = 60, requirement of 100% of
satisfied UEs and different data rate requirements.
(a) Outage.
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(b) Percentage of satisfied UEs.
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fraction of the total number of possible SDMA groups, which for the considered

scenario is 91, 390, according to (3.1). Therefore, it is unpractical to solve the

problem considering all possible SDMA groups.

Analyzing Figure 3.14b, we can see that the system data rate is almost

unchanged and does not depend on the number of SDMA groups, i.e., the

increase of 𝑁g has more impact on the outage than on the capacity. This can be

justified due to the grouping metric (3.17a), which tries to create SDMA groups

that maximize capacity. Due to that, the capacity for the feasible solutions has

a similar behavior. Focusing on the relative performance among algorithms,

the S-PROP and JSM algorithms have a loss of approximately 15% and 43%,

respectively, in comparison to the S-OPT solution.

In Figure 3.15, we evaluate the step 3 (scheduling step) in terms of outage

rate for the S-PROP, JSM, and S-OPT solutions and the average number of

satisfied UEs for the S-PROP solution when the required data rate (𝑙𝑗) varies

from 5 to 6 Mbps. As we can see in Figure 3.15a, the outage rate increases when

the required data rate per UE increases. Focusing on the relative performance

among algorithms, the S-PROP algorithm performs near optimally for the

requirement of 5 Mbps, and a performance loss is noted for a requirement of 6

Mbps.

In the next analyses, we evaluate the performance of the S-PROP algorithm

in scenarios which do not have a feasible solution, or in which it is hard to

obtain a feasible solution. We denote this case as “unf.”. An unfeasible case

happens when the analyzed algorithm is not able to find a solution that satisfies

all the constraints of problem (3.18). Note that, it is interesting to analyze this

scenario since an important feature that a QoS constrained RRA algorithm
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Figure 3.16 – System outage and satisfaction of our proposed and OPT solutions for
a scenario considering 2 UEs selected per cluster, 𝑁g = 60, requirement of 6 Mbps per
UE and different requirements of satisfied UEs per service.
(a) Outage.
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(b) Percentage of satisfied UEs.
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should seek is to provide a good result within the presented circumstances.

This “unf.” case is compared against the scenario considering all the simulation

rounds. Therefore, as we can see in Figure 3.15b, even when the S-PROP

algorithm is not able to find a solution, it provides a result that satisfies a

good number of UEs. Focusing on performance, the average percentage of

satisfied UEs is almost 100% for a requirement of 5 Mbps and 98% for a

requirement of 6 Mbps considering all simulation rounds. When only unfeasible

simulation rounds are considered, the S-PROP algorithm satisfies in average

92% of the UEs for 𝛽 = 0, which is reasonable considering the hard nature of the

scenario. This happens due to step 3 of part 2 of the proposed RRA algorithm

in Figure 3.9, wherein at each iteration the algorithm tries to satisfy with only

one RB reallocation a high number of unsatisfied UEs. Therefore, although

in Figure 3.15a we can see a high outage rate when the required data rate is 6

Mbps, most of the UEs are satisfied. Thus, a way to deal with these unsatisfied

UEs is to satisfy them in the upcoming TTIs, i.e., the UEs can receive a priority

inversely proportional to the data rate obtained until now. Note that we do not

present results for the S-OPT solution regarding the percentage of satisfied

UEs since the solver only returns a valid solution when the problem is feasible.

Therefore, the average percentage of satisfied UEs cannot be analyzed for the S-

OPT algorithm. In Figure 3.15a we can see an outage of approximately 0% when

we consider the requirements of 5 Mbps, therefore, the number of simulation

rounds containing only unfeasible solutions is very low (close to 0). Thus an

analysis containing only unfeasible solutions cannot be performed for those

requirements. Moreover, we skip the analysis of the average percentage of

satisfied UEs for the JSM algorithm since it has a higher loss in outage rate in

comparison to our proposed algorithm depending of 𝛽.
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In Figure 3.16, we evaluate the step 3 (scheduling step) in terms of outage

rate for the S-PROP, JSM, and S-OPT solutions and the percentage of satisfied

UEs for the S-PROP solution when the required number of satisfied UEs per

service varies. As we can see in Figure 3.16a, the outage rate increases with the

number of UEs that need to be satisfied. Note that the gap among S-PROP, JSM,

and S-OPT solution is reduced when the number of satisfied UEs decreases.

This behavior is similar to that one seen in Figure 3.15a when the required data

rate decreases. Focusing on the relative performance among algorithms, when

𝛽 is close to 0, the S-PROP and JSM solutions present a higher performance

loss. However, despite this higher loss in Figure 3.16a, we will see in the sequel

that the S-PROP solution is capable of satisfying, on average, almost the target

satisfaction percentage.

In Figure 3.16b we present the percentage of satisfied UEs for the scenarios

in Figure 3.16a that presented higher performance losses. Therefore, consider-

ing both cases (with all simulation rounds and the case with only unfeasible

simulation rounds), we can see that the S-PROP solution can almost reach

the required satisfaction target (95% and 100%). As we can see in Figure 3.16b,

when we aim to satisfy 100% and 95% of the UEs, the S-PROP solution is capable

of satisfying 98% and 94% of them considering the optimal 𝛽 value for satisfied

UEs and all simulation rounds. Considering only the unfeasible simulation

rounds, we can see that the gap between the target and obtained satisfaction

is reduced when the number of required satisfied UEs decreases. As explained

before, a way to deal with these unsatisfied UEs is to satisfy them in the next

TTIs.

In summary, from the analyses of the results, the S-PROP low-complexity

algorithm achieves good performance compared to the S-OPT solution con-

sidering the problem objective and constraints. As shown in Section 3.4.3,

the computational complexity of the S-PROP suboptimal algorithm is polyno-

mial and much lower than that of the S-OPT solution, thus offering a good

performance-complexity trade-off.

3.5 Conclusions

In this chapter, we proposed and evaluated a framework of RRA for hybrid

precoding massive MIMO communication systems that consists of three parts.

First, the clustering procedure partitions the UEs into clusters containing

spatially correlated UEs using a clustering algorithm. This step reduces the

search space to perform the SDMA groups. Secondly, the grouping procedure

selects spatially compatible UEs from each cluster to form SDMA groups.
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Finally, the scheduling procedure assigns RBs to the SDMA groups aiming at

optimizing a predefined objective.

To evaluate our proposed framework, firstly we solve the problem of maxi-

mizing the system data rate considering one RB. Since this problem considers

only one RB, it only applies the clustering and grouping procedure. In the

clustering procedure, we partition UEs into clusters that are spatially com-

patible using the K-means clustering algorithm. The analog part of the hybrid

precoder is obtained from the cluster centroids. In the grouping procedure, we

select UEs from each cluster to build an SDMA group in order to maximize

the capacity. In order to reduce the computional burden involved in SDMA

grouping, a low-complexity metric to find suitable UEs from each cluster while

avoiding computing digital precoders for every possible candidate group of UEs

is employed. Then, we formulated an optimization problem using a spatial com-

patibility metric based on [24] to build SDMA groups. Moreover, a suboptimal

algorithm was proposed to solve this problem, and it was compared against the

optimal and baseline solutions. Simulation results indicate that we can obtain

gains by exploiting spatial compatibility when compared to less intelligent

strategies that randomly choose UEs from clusters to build the SDMA groups.

Lastly, the choice of a suitable value for 𝛽 (spatial separability versus channel

gain) in the studied problems can lead to considerable additional gains.

Next, we extend the previous problem to solve the problem of maximizing

the system data rate considering multiple RBs, services and QoS requirements.

The clustering procedure is done the same way as the previous problem.

The grouping process formulates an optimization problem using a spatial

compatibility metric to build different SDMA groups to maximize the data rate

and QoS requirements. The solution of this problem generates a set of SDMA

groups suitable for all RBs exploiting the channel hardening characteristic.

Finally, it was necessary to allocate the RBs to SDMA groups to meet QoS

requirements while maximizing the data rate. Moreover, a suboptimal algorithm

was proposed to solve the scheduling part, and it was compared against the

optimal solution and an adaptation of a solution from the literature. Simulation

results showed that our proposed framework presented a good performance

especially in low and moderated system loads. In high loads, even when the

proposed algorithm was not able to find a feasible solution, it provided good

results in terms of UE satisfaction. We also show that a suitable trade-off

between the spatial channel correlation and channel gain should be chosen

to improve the system performance. Also, there may be an optimum trade-off

to the outage rate and another to capacity, i.e., this choice depends on the

system objective. Moreover, the spatial compatibility and channel hardening
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characteristics can be exploited to drastically reduce the possible number of

SDMA groups that need to be built in a system. Furthermore, the proposed

suboptimal solution presented a good performance-complexity trade-off.

The content of this chapter can be extended in some directions. In the

following, some of the possible future works are pointed out:

• Extend the adopted scenario to a more dynamic one where UEs are moving

at different speeds. This scenario makes the channels from UEs change

rapidly, making it necessary to calculate more often the clustering and

covariance, which can lead to an unpractical scenario. It is interesting to

evaluate how our proposed solutions perform in this more challenging

scenario.

• Extend the scenario to consider a traffic model. One possibility is to adapt

the proposed framework to consider the network traffic as information to

decide which UEs are going to be scheduled.

• Extend the scenario to consider other QoS requirements, such as packet

delay, latency and jitter.
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Chapter 4
RRA in Massive MIMO Systems
Using RL Tools

In the present chapter, we deal with RRA problems for massive MIMO

networks proposing scheduling algorithms using RL tools to optimize the

system performance. More specifically, we propose a framework that leverages

RL in order to schedule UEs in a massive MIMO scenario with hybrid precoding.

This way, we propose three learning-based scheduling algorithms by employing

CMAB theory aiming at maximizing system data rate, fairness, and assuring

QoS requirements, whose action space is reduced by taking advantage of the

interference mitigation properties of ZF precoding and clustering described

in Chapter 2.

4.1 Contributions and Chapter Organization

This chapter has the following main contributions:

• A framework that leverages RL in order to schedule UEs in a massive

MIMO scenario with hybrid precoding that has the following advantages:

– The framework is based on virtual learning agents, where the BS is

the physical entity, and the UE clusters are the logical entities. It

learns from past experience about the spatial compatibility of the

different UEs inside a cluster how to select the UEs to achieve a given

objective.

– To perform scheduling, virtual agents do not require instantaneous

CSI of UEs for the compatibility check, but instead the system sum

data rate (reward) of UEs scheduled together in the past, thus re-

ducing the signaling overhead (feedback costs). Furthermore, the
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instantaneous CSI is only reported for the scheduled UEs, reducing

even more the signaling overhead.

– The framework is capable of supporting UEs with different data rate

requirements (multiple services).

• The proposed framework supports three different objectives, which can dy-

namically configure/adapt the objective to consider throughput maximiza-

tion, fairness guarantees, or balance between throughput maximization

and QoS provisioning.

• Performance evaluation and comparison of the proposed framework in a

massive MIMO scenario with hybrid precoding against reference solutions

previously proposed in the literature.

This chapter is organized as follows. Section 3.2 shows how clustering and

ZF digital precoding can be used to reduce the scheduling search space of our

proposal. In the same section, we propose the three learning-based schedulers

of our framework. Section 4.3 shows the numerical results of the proposed

framework against reference solutions. Finally, Section 4.4 presents the main

chapter conclusions.

4.2 Action Space

We assume that the BS is the physical learning agent responsible for max-

imizing the reward 𝛼 by scheduling 𝐾 UEs. The reward 𝛼 is defined as the

instantaneous system data rate, which is the sum of data rates achieved by

the 𝐾 scheduled UEs. The reward is the same for all three proposed sched-

ulers These differ by the use of context information, as it will be seen later.

Furthermore, we assume that an action consists of selecting 𝐾 UEs that will

be scheduled by the BS. Then, the number 𝐴 of possible actions in the action

space 𝒜 is given by

𝐴 =

(︂
𝐽

𝐾

)︂
, (4.1)

which increases combinatorially with 𝐽 and 𝐾, making the action set size

rapidly get impractical. To reduce the number of actions, we consider each

cluster as a logical virtual agent by using the previous assumption presented

in Chapter 3, that the signal transmitted from the BS serving UEs in cluster 𝑥

produces negligible interference at the UEs in cluster 𝑦. Each virtual agent is

responsible for performing an action, i.e., scheduling the UEs belonging to its

own cluster. Therefore, we can define for each virtual agent 𝑐 the set of actions
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𝒜𝑐, whose size 𝐴𝑐 is given by

𝐴𝑐 =

(︂
𝐽𝑐
𝐾𝑐

)︂
, (4.2)

where 𝐽𝑐 and 𝐾𝑐 are the total number of UEs and the number of scheduled

UEs of cluster 𝑐, respectively. Since
𝐶∑︀
𝑐=1

𝐴𝑐 ≪ 𝐴, the action space is drastically

reduced.

4.2.1 Maximum Throughput Solution

In the sequel, we describe the maximum throughput (MT) learning algorithm

as a CMAB problem. Note that the term throughput refers to the throughput

obtained in a long run, i.e., from the first TTI until the current TTI. Conse-

quently, we need to estimate action values which are used to make the action

selection decision. The action value of an action is defined as the mean received

reward when that action is selected. This way, the incremental average updat-

ing method is used to define the action value vector 𝑑𝑐 ∈ R𝐴𝑐×1
+ as follows [35,

Eq. 2.4]

𝑑𝑐(𝑎𝑐) = 𝑑𝑐(𝑎𝑐) +
1

𝑛𝑐(𝑎𝑐)
(𝛼− 𝑑𝑐(𝑎𝑐)), (4.3)

where 𝑎𝑐 is a given action, 𝑛𝑐 ∈ Z𝐴𝑐×1
+ is the vector containing the number of

times that a given action was selected, and the 𝑛𝑐(𝑔) and 𝑑𝑐 refer to the element

𝑔 from vectors 𝑛𝑐 and 𝑑𝑐, respectively. For example, 𝑛𝑐(𝑎𝑐) refers to the number

of times in cluster 𝑐 that the virtual agent selected the action 𝑎𝑐 that belongs to

cluster 𝑐. Since the three proposed schedulers use the same reward, note that

this same estimation of action values will also be used by the proportional fair

and QoS solutions.

4.2.2 Maximum Throughput with Fairness Guarantees

Note that, since the reward contains the system data rate, the scheduler

presented in Section 4.2.1 does not require any additional information. This is

not the case of the next presented schedulers, which require more information

about the system to achieve their objectives. Therefore, a context information

is going to be used by the next proposed schedulers and its definition, as well

as its usage, are going to be presented in this section and in Section 4.2.3.

The maximum throughput with fairness guarantees (MTFG) algorithm pro-

posed here is modeled as a CMAB problem and aims to maximize the system

throughput guaranteeing the fairness among UEs. Since we are working with

FDD massive MIMO, obtaining the instantaneous CSI is impractical. Therefore,

the outdated CSI, which we consider available and was used before by the

clustering in Section 2.1, is the considered context information used by our
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MTFG algorithm, which is used to obtain the UEs’ scheduling priority. Note

that we consider that the UEs average throughput is the sum of the throughput

obtained by each UE divided by the number of UEs. The UE priority for being

scheduled is a value between 0 and 1 that reflects the distance of the UE

throughput in relation to the UEs average throughput, i.e., a UE throughput

lesser in relation to the UEs average throughput results in a UE scheduling

priority close to 1, and a UE throughput greater in relation to the UEs average

throughput results in a UE scheduling priority close to 0. In the following, we

describe how the UEs’ priority is modeled to achieve maximum throughput and

guarantee the fairness among UEs. We use a priority function in which the UE

priority decreases rapidly when its throughput approaches or exceeds its target

(sigmoidal function). Therefore, similarly to [41, Eq.40], we propose to use the

mentioned function

𝑃𝑗(𝑣𝑗) =
1

1 + e−𝛿(
𝑣𝑗

𝑣avg −1)
, (4.4)

where 𝛿 > 0 controls the function shape, 𝑣avg is the sum throughput obtained

over the number of UEs, and 𝑣𝑗 is the throughput of the 𝑗-th UE. Note that we

normalize 𝑣𝑗 by 𝑣avg to map the throughput of 𝑣𝑗 as a portion of the UEs’ average

throughput, i.e., between 0 and 2, which was selected to have a better sampling.

𝑃𝑗(𝑣𝑗) is a decreasing function of the UEs throughput with a controllable shape

𝜂 and centered at 𝑣avg, as shown in Figure 4.1. As in [41], we used 𝛿 = −9.1912
to obtain the shape shown in Figure 4.1. The idea is prioritizing the UE with

the lowest throughput in order to improve the system fairness.

Figure 4.1 – UE prioritization function for MTFG.
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Therefore, we can define the mean priority 𝑞𝑐(𝑎𝑐) of UEs in the action 𝑎𝑐
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belonging to cluster 𝑐 as

𝑞𝑐(𝑎𝑐) =
1

𝐾𝑐

∑︁
𝑗∈𝒰𝑐(𝑎𝑐)

𝑃 (𝑣𝑗), (4.5)

where 𝒰𝑐(𝑎𝑐) is the group of UEs composing the action 𝑎𝑐 in the cluster 𝑐.

The UEs priorities and the action values will be jointly used to determine

which actions are going to be selected in a given TTI. Therefore, we can define

𝑞𝑐 ∈ R𝐴𝑐×1 as mean UEs priority vector of each action in a cluster 𝑐.

4.2.3 Maximum Throughput with QoS Guarantees

In the following, we describe how the UEs’ priority is modeled aiming at

maximizing the system throughput and guarantee the QoS requirements,

namely maximum throughput with QoS guarantees (MTQG). Therefore, we

replaced the variable 𝑣avg that defines the center of our function (4.4) by 𝑣req
𝑗 ,

which is the required throughput of UE 𝑗. As in Chapter 3, a UE is considered

satisfied when it achieves a target throughput. With this in mind, we need

a priority function capable of being adaptable to achieve a trade-off between

throughput and QoS. Therefore, the UEs’ priority depends on its current

throughput, so the algorithm chooses the action with the best trade-off between

the QoS requirements of UEs and the system throughput.

This can be achieved using the function defined in (4.4) and controlling

its shape through the variable 𝛿. Therefore, as it can be seen, depending on

the 𝑃𝑗 shape and current throughput, an unsatisfied UE (𝑣𝑗 < 𝑣𝑟𝑒𝑞𝑗 ) can have

a priority to be scheduled between 0.5 and 1, while a satisfied UE can have a

priority between 0 and 0.5. The shape of 𝑃𝑗(𝑣𝑗) is associated with the system

satisfaction, where in Section 5.1 of [41] the authors obtained good results

for 𝛿 = −9.1912. In this work, we consider the system satisfaction as the ratio

between the number of satisfied UEs and the total number of UEs. Following a

similar approach as [41], we created 21 shapes for 𝑃 (·) based on the value of 𝛿,

which are shown in Figure 4.2 for 𝜂 ∈ {−10,−9, . . . , 9, 10} and 𝛿 = −9.1912× 2ϒ,

where ϒ determines the shape of the function 𝑃𝑗.

Therefore, in relation to Figure 4.2, if the system satisfaction is above 𝜇 and

the worst satisfied UE has its throughput Ω greater than its target, the ϒ value

is reduced by 1 so as to make 𝑃𝑗 in (4.4) approach a straight/flat line (light gray).

The 𝜇 and Ω values are estimated by the network operator, e.g., based on the

environment and past experience. When the function assumes a flat line shape,

the UEs have the same priority of approximately 0.5, leading the scheduler to

select UEs following a maximum throughput policy. Otherwise, the ϒ value

increases by 1 as to make the shape 𝑃𝑗(𝑣𝑗) in (4.4) approach a step function
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Figure 4.2 – UE prioritization function for MTQG.
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(dark gray). When the function assumes the step function shape, the unsatisfied

and over-satisfied UEs have priorities of almost 1 and 0, respectively, leading

the scheduler to select UEs following a maximum satisfaction policy.

4.2.4 Proposed Framework

The framework containing the MT, MTFG, and MTQG solution is presented

in Algorithm 4. Note that, since all proposed schedulers use the same reward

(system throughput), we can create a joint framework even if they have different

goals. Therefore, the solutions MTFG and MTQG can reach their desired goals

by combining this shared reward with (4.5). Also, for the MTQG solution, the

changes in (4.4) need to be considered, as explained in Section 4.2.3. For each

TTI and virtual agent, depending on the system operator objective (MT, MTFG

or MTQG), our framework selects its actions based on the 𝜖-greedy policy,

which has two distinct phases: exploration (with probability 𝜖) and exploitation

(with probability 1− 𝜖). The 𝜖 value decays linearly at each TTI until it reaches

the desired value, and this strategy is known in the literature as 𝜖-decaying

method [79]. This way, a random value between 0 and 1 at each TTI is generated,

if this value is greater or equal than 𝜖 the algorithm will enter in the exploration

phase. Otherwise, it will enter the exploitation phase. For more details on

the 𝜖-greedy strategy as well the 𝜖-decaying method, please refer to [79]. In

the exploration phase, a random action is selected from 𝒜𝑐. An exploration

phase is needed to get information about the unexplored actions or even those

actions that are not selected so often. In the exploitation phase, if the system

provider chooses to operate using the MT scheduling, the virtual agent chooses

an action that maximizes the value of 𝑑𝑐. Otherwise, if the system provider
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chooses to operate using the MTFG or MTQG scheduling, the virtual agent

computes its priority using (4.5) following the definitions of Section 4.2.2 and

Section 4.2.3, respectively.

After that, the virtual agent selects the action that maximizes the trade-off

between the UEs throughput and their priorities, which corresponds to the

maximum value in the Hadamard (element-wise) product 𝑞𝑐 ⊙ 𝑑𝑐. Then, the BS

schedules the UEs chosen by the virtual agents. These scheduled UEs use the

analog precoder to feed back their equivalent channel, which is used as CSI to

calculate their digital precoders. Afterwards, the system data rate is calculated

by the BS using (2.12).

In the next step, the system data rate associated with the action selected

by each virtual agent, as well as the number of times that these actions were

selected, are stored in 𝑑𝑐 and 𝑛𝑐, respectively. Moreover, if the framework is

operating using the MTQG scheduling, the shape of the priority function needs

to be managed. Therefore, let us introduce the variables 𝜇 and Ω. 𝜇 is a value

between 0 and 1 that refers to the percentage of satisfied UEs required by the

system operator. Ω is a value that refers to the throughput security threshold

that the worst UE needs to have before the system starts to get concerned

about the system satisfaction, i.e., the threshold that triggers the mechanism

that changes the scheduling priority shape. The variables 𝜇, Ω and ϒ determine

the shape of the function 𝑃𝑗(𝑣𝑗), which starts at a predetermined shape 𝜂 = 10

(maximum priority) and may change as the system evolves. The change criteria

of those parameters are shown afterward.

Hence, each virtual agent learns over time its best groups of UEs to maximize

system throughput, a knowledge that is combined with the context information

on prioritizing certain UEs to improve QoS provisioning. Algorithm 4 presents

the proposed framework containing the MT, MTFG and MTQG solutions.

4.2.5 Signaling Overhead Reduction

In this chapter, at each TTI, the BS firstly schedules the UEs using one of our

proposed algorithms presented in Section 4.2. Secondly, the scheduled UEs feed

back their CSI using the analog precoders (2.6) and eigenvectors of equivalent

channel (2.3) presented in Section 2.2. Finally, the digital precoder (2.9) is

computed following Section 2.2, and the data is sent to the scheduled UEs

using (2.12).

In general, most works in the literature (e.g., [29], [45], [47], [53]) consider

that all UEs in the system feed back their instantaneous equivalent CSI be-

fore scheduling, providing information that helps the scheduler. Our scheme,
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Algorithm 4 Proposed Framework.
1: Input: 𝒜𝑐, 𝐶 and 𝑇
2: Initialize: 𝑞𝑐 = 0𝐴𝑐×1 and 𝑑𝑐 = 0𝐴𝑐×1, ∀𝑐
3: Initialize: set of scheduled UEs 𝒮 = ∅
4: Initialize: counter vectors 𝑛𝑐 = 0𝐴𝑐×1 of each action ∀𝑐
5: Initialize: shape control variable 𝜂 = 10 ◁ Max. priority.
6: for each TTI do
7: for 𝑐 = 1 to 𝐶 do
8: if system operator decides for MT scheduling then

9: 𝑎𝑐 ←

⎧⎪⎪⎪⎨⎪⎪⎪⎩
action that maximizes (𝑑𝑐)⏟  ⏞  

Exploitation

, probability 1− 𝜖

random action from 𝒜𝑐⏟  ⏞  
Exploration

, probability 𝜖

10: else if system operator decides for MTFG scheduling then
11: Calculate the vector of priorities 𝑞𝑐 using (4.5) following Section 4.2.2

12: 𝑎𝑐 ←

⎧⎪⎪⎪⎨⎪⎪⎪⎩
action that maximizes (𝑞𝑐 ⊙ 𝑑𝑐)⏟  ⏞  

Exploitation

, probability 1− 𝜖

random action from 𝒜𝑐⏟  ⏞  
Exploration

, probability 𝜖

13: else if system operator decides for MTQG scheduling then
14: Calculate the vector of priorities 𝑞𝑐 using (4.5) following Section 4.2.3

15: 𝑎𝑐 ←

⎧⎪⎪⎪⎨⎪⎪⎪⎩
action that maximizes (𝑞𝑐 ⊙ 𝑑𝑐)⏟  ⏞  

Exploitation

, probability 1− 𝜖

random action from 𝒜𝑐⏟  ⏞  
Exploration

, probability 𝜖

16: end if
17: 𝒮 ← 𝒮 ∪𝒜𝑐(𝑎𝑐) ◁ Schedule the UEs.
18: end for
19: Scheduled UEs 𝒮 feed back their CSI
20: Compute hybrid (analog and digital) precoder using (2.6) and (2.9)
21: 𝑑← sum of scheduled UEs data rate using (2.12) ◁ Reward.
22: for 𝑐 = 1 to 𝐶 do
23: 𝑛𝑐(𝑎𝑐)← 𝑛𝑐(𝑎𝑐) + 1 ◁ Number of times that 𝑎𝑐 was chosen.
24: 𝑑𝑐(𝑎𝑐)← 𝑑𝑐(𝑎𝑐) +

1
𝑛𝑐(𝑎𝑐)

(𝛼− 𝑑𝑐(𝑎𝑐)) ◁ Action values.
25: end for
26: if system operator decides for MTQG scheduling then
27: if system satisfaction ≥ 𝜇 and the lowest satisfied UE throughput ≥ Ω (throughput

requirement) then
28: if 𝜂 ≥ −10 then
29: 𝜂 = 𝜂 − 1 ◁ Prioritize more the throughput.
30: end if
31: else
32: if 𝜂 ≤ 10 then
33: 𝜂 = 𝑠+ 1 ◁ Prioritize more the satisfaction.
34: end if
35: end if
36: end if
37: end for

however, needs only the equivalent instantaneous CSI of the 𝐾 scheduled UEs.

Therefore, it requires less signaling than those previous works. Figure 4.3

shows the main steps of all proposed algorithms.
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Figure 4.3 – Illustration of the main steps of the proposed scheduling algorithms.
Firstly, the virtual agents select the UEs to be scheduled by the BS based on the
exploration or exploitation strategy. Secondly, the selected UEs are scheduled by the
BS and feed back their equivalent instantaneous CSIs. Finally, depending on the
desired system performance the MT, MTFG or MTQG scheduling is executed.

4.3 Numerical Results

In this section, we describe our main assumptions as well as the scenario

considered in our study. Afterwards, we compare the performance of the pro-

posed algorithms against that of some baseline solutions previously proposed

in the literature.

The scenario considered herein is shown in Figure 4.4, where a massive

MIMO BS at coordinate (0, 0) is equipped with an 8× 8 UPA (𝑁 = 64), where 𝑥

and 𝑦 axis are the distances from the BS to the other elements of the scenario.

It serves 20 UEs which are randomly distributed inside two hotspots, each with

a radius of 15 m, located inside a 60° cell sector with 200 m of radius. The

centers of the hotspots are 100 m away from the BS and 30° apart. Moreover, as

in [8], [32], [53], [73], [74], we consider at most 10% of the number of transmit

antennas as the quantity of available RF chains. Furthermore, the number of

simulated UEs is limited by the complexity to obtain the optimal solution that

has an exponential computational complexity.

We adopt the QuaDRiGa UMi LOS channel model [75] and assume the BS
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Figure 4.4 – Scenario considering 2 hotspots with a determined angle 𝜃 between their
centers.
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power to be evenly divided among 125 RBs. However, in this chapter, we are

assuming only one RB available for transmission. The most relevant parameters

used in our simulations are shown in Table 4.1.

Table 4.1 – Simulation Parameters for Chapter 4.
Parameter Value

System bandwidth 100 MHz
System carrier frequency 28 GHz
Number of subcarriers per RB 12
Subcarrier spacing 60 kHz
TTI duration 0.25 ms
Number of OFDM symbols per TTI 14
Total transmit power 35 dBm
Noise figure 9 dB
Noise spectral density -174 dBm/Hz
Shadowing standard deviation 3.1 dB
Cell radius 200 m
UEs Speed 0.83 and 16.67 m/s
Number of UEs 20
Number of clusters 2
Number of UEs per cluster 10
Number of UEs selected per cluster 2
Number of simulation rounds 100
Simulation duration 1 s

Source: Created by the author.

Herein, we consider two services with UEs requiring different throughput

to be satisfied. For simplicity, we consider that each UE is using only one

service. In order to differentiate the services, we consider that UEs from service

2 require 200 kbps more than the ones from service 1. Furthermore, we consider

that the BS requires a system satisfaction 𝜇 = 90%, which we assume as the

minimum acceptable satisfaction rate in our system. We also consider that
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the UEs are randomly distributed uniformly among the services. Finally, we

consider the value of Ω = 120% of the worst satisfied UE throughput to trigger

the change of shape conditions. The Ω value is chosen to make the framework

adapt itself before the system satisfaction goes down under the required value 𝜇.

Note that these different service requirements are going to be used to evaluate

the MTQG solution.

In order to get the system into a typically normal long-run condition for

the RL algorithms, we consider a warm-up phase (which can be considered

the RL training stage). Note that this warm-up phase is considered only for

the RL schedulers since they perform decisions based on past experiences. In

this phase, we consider that the UEs throughput requirement starts fulfilled

and the 𝜖 values decay linearly from 100% to 5% over time. Thus, we consider

that the warm-up phase has a duration of 100 TTIs. The motivation of having

more exploration at the start is to avoid getting stuck into a local optimum by

acquiring more information about the action space.

4.3.1 Max Rate Evaluation

In this section, we compare three solutions: the proposed MT algorithm

with the solution proposed in Chapter 3 (BF) [32] – which employs a greedy

algorithm to solve the scheduling problem –, and with the optimum solution

(OPT) – which knows the equivalent instantaneous CSI to calculate all precoders

and uses brute force enumerating all possible solutions choosing the best one.

Notice that, due to the combinatorial size of the problem, the OPT solution

has impractical computational complexity, which was calculated in (4.1). Also

notice that all the simulated algorithms in this section use hybrid precoding,

perform clustering before scheduling and, consequently, select only 𝐾𝑐 UEs per

cluster. Therefore, the interference among UEs of different clusters is supposed

to be negligible for all simulated algorithms, as explained in Section 3.3.

In Figure 4.5, MT, BF, and OPT schedulers are compared in terms of system

throughput for different UE speeds. The motivation to analyze scenarios with

different speeds is to evaluate if there is a loss in the learning algorithm

when the scenario gets more dynamic. The BF scheduler in Section 3.3 has

a parameter 𝛽 that establishes the trade-off between spatial correlation and

channel gain. Note that the optimal value for this parameter can change with

the UE distribution, so the system needs to find and adjust its value. To

perform a fair comparison between schedulers, we consider that the optimal 𝛽

is known by the system. As our proposed MT scheduler learns from the past, it

is not sensitive to the UE distribution, differently from the BF solution. Another
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Figure 4.5 – System throughput over the TTIs.
(a) UEs speed 3 km/h.
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(b) UEs speed 60 km/h.
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drawback of the BF scheduler in Section 3.3 is that it uses the covariance matrix

to schedule the UEs. However, this information becomes outdated over time and

needs to be estimated with a certain periodicity. In our simulations the same

large-scale, long-term statistical CSI is used during the entire simulation. Note

that these issues do not affect our proposed MT since the UEs are scheduled

based on their past experience.

Focusing on the relative performance among algorithms, we can see that the

MT scheduler needs only approximately 250 TTIs (62.5 ms) to outperform the

BF solution. Furthermore, Figures 4.5a and 4.5b show that the OPT solution

outperforms approximately 10% and 16% the MT and BF schedulers, respec-

tively. Also, Figure 4.5b shows that the MT scheduler is robust to high mobility

scenarios obtaining almost the same performance shown in Figure 4.5a. Note

that, in the high mobility scenario the small-scale fading changes considerably

for 100 TTIs at a speed of 60 km/h. Finally, in this scenario some UEs are

going to get closer to the BS than in the low mobility scenario, therefore, these

UEs are going to be scheduled by the MT and BF solutions achieving better

performance.

4.3.2 Maximum Throughput with Fairness Guarantees Evaluation

In this section, we compare the proposed MTFG scheduler with the MT

solution, which does not take into account any context information, and with

the blind equal throughput (BET) [80], which uses the past average through-

put as metric to schedule UEs. The BET scheduling stores the past average

throughput and uses it as a metric to calculate the UEs scheduling priorities,

providing fairness among UEs regardless of their channel conditions [80]. For

more details on the BET algorithm, please refer to [80].
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Figure 4.6 – System throughput over the TTIs for MT, MTFG, and BET algorithms.
(a) UEs speed 3 km/h.
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(b) UEs speed 60 km/h.
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Source: Created by the author.

In Figure 4.6, MT, MTFG, and BET schedulers are compared in terms of

system throughput for different UE speeds. As we can see, the MT scheduler

achieves the best performance in terms of throughput. However, it will be seen

later that seeking only for maximum throughput negatively affects the fairness

among UEs. The MTFG scheduler solves this problem by giving priority to

the UEs with lowest throughput, which is done through the priority function

(4.4). Therefore, actions with highest values will be selected more often aiming

at increasing the fairness among UEs, which negatively impacts the system

throughput. Moreover, the BET scheduler has the worst performance due to its

search for fairness, without concern over the system throughput achieved.

Focusing on the relative performance among schedulers in terms of through-

put, we can see in Figures 4.6a and 4.6b that the MT scheduler outperforms

the MTFG and BET by approximately 16% and 45%, respectively. Moreover,

Figure 4.6b shows that the proposed scheduler can maintain its throughput

performance even for higher mobility.

In Figure 4.7, MT, MTFG, and BET schedulers are compared in terms of

Jain’s fairness index for different UE speeds. As we can see, the performance

of the schedulers in terms of fairness is the opposite of the one presented

in Figure 4.6, as expected. The MT achieves the worst performance since it

is concerned only about the system throughput. Moreover, in Figures 4.7a

and 4.7b, the MTFG needs approximately 100 TTIs (25 ms) to achieve the same

performance of the BET solution. Note that the MTFG scheduler achieves higher

fairness among UEs at the price of a relatively small loss in throughput, thus

offering a good fairness-throughput trade-off. Moreover, Figure 4.7b shows that

the proposed MTFG can maintain its performance even for higher mobility.
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Figure 4.7 – Jain’s fairness index over the TTIs for MT, MTFG, and BET algorithms.
(a) UEs speed 3 km/h.
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(b) UEs speed 60 km/h.
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Source: Created by the author.

4.3.3 Maximum Throughput with QoS Guarantees Evaluation

In this section, we compare the scheduler MTQG with the QoS-aware pro-

portional fair PF QoS (PF QoS) scheduler [80] and an adaptation of the JSM

scheduler proposed in [41]. The proportional fair (PF) QoS is similar to the

traditional PF scheduling. However, it works with two sets of UEs: i) the priority

set with UEs that do not meet their QoS requirements, which own the highest

priorities, and ii) the low priority set with the rest of the UEs (currently satisfied

UEs). The JSM scheduler uses two policies based on the derivatives of the

sigmoidal to obtain the UEs’ priority. For more details on the JSM and PF QoS

algorithms, please refer to [80] and [41], respectively. Moreover, the instanta-

neous CSI is used by the PF QoS and JSM schedulers to estimate the data

rate, which is the information utilized to schedule the UEs. Therefore, for the

sake of fairness in comparisons among different solutions, PF QoS and JSM

schedulers use dominant eigenvalues and eigenvectors to estimate the data

rate as the proposed schedulers, instead of using instantaneous CSI, since this

is the same CSI employed by our proposed CMAB framework.

In Figure 4.8, the system satisfaction for MTQG, PF QoS, and JSM sched-

ulers is shown for increasing values of the required throughput of service 1. As

we can see, the PF QoS is the scheduler that achieves the worst performance

for both UE speeds. This happens due to the simplicity of the scheduler and

the inaccurate CSI available, which drastically decreases the performance.

In Figure 4.8a, we can see that MTQG achieves the best performance and

maintains higher satisfaction levels: above 𝜇 and close to 100%. However, the

increase in the UEs’ speed makes the MTQG and JSM schedulers achieve the

same performance in Figure 4.8b. This happens due to the quick change of

the channel state caused by the higher UEs’ speed, which makes the best
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Figure 4.8 – System satisfaction versus required throughput of service 1 for the MTQG,
PF QoS, and JSM algorithms.
(a) UEs speed 3 km/h.
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Figure 4.9 – System throughput versus required throughput of service 1 for the MTQG,
PF QoS, and JSM algorithms.
(a) UEs speed 3 km/h.
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scheduling compositions change more often, leading to a more challenging

scenario to be learned by the MTQG. Also, the performance loss of the baseline

algorithms occurs because they do not take into account any information about

the interference among scheduled UEs, increasing the probability of scheduling

UEs with correlated channels in the same RB. On the other hand, MTQG learns

about channel correlation through rewards and uses the same CSI as the

baseline schedulers.

In Figure 4.9, MTQG, PF QoS, and JSM schedulers are compared in terms

of system throughput for different values of required throughput for service

1. We recall that the required throughput of service 2 is 200 kbps higher than

that of service 1. As it can be seen, the system throughput decreases as the

required throughput increases, so that there is a trade-off between satisfaction

and system throughput to which the algorithms are subjected. Moreover, the



Chapter 4. RRA in Massive MIMO Systems Using RL Tools 91

MTQG scheduler achieves the highest system throughput independently of the

service required throughput. The MTQG and JSM schedulers can maintain

almost the same throughput over the required throughput. In Figure 4.8b,

only the PF QoS scheduler decreases drastically its satisfaction compared to

the JSM and MTQG solutions. Anyway, the MTQG scheduler provides gains

in system throughput of up to 41% compared to PF QoS and JSM algorithms.

Moreover, Figure 4.9b shows that the proposed algorithm can maintain its

performance even for higher mobility.

4.4 Conclusions

In this chapter, we proposed and evaluated a framework of RRA for hybrid

precoding massive MIMO communication systems using RL tools. In order to

deal with the combinatorial search space of the scheduler, we create clusters

of UEs with correlated statistical channels and propose a new strategy that

considers each cluster as a virtual learning agent. We consider that an action

is the selection of UEs to be scheduled. Therefore, not considering virtual

agents leads to an unpractical number of possible actions. Also, the virtual

agents select the UEs belonging to their own cluster, aiming at maximizing a

pre-determined objective. Therefore, the BS is responsible for receiving the UEs

selected by the virtual agents and for scheduling them.

We solved three RRA problems in our framework, which are throughput max-

imization only, throughput maximization considering fairness, and throughput

maximization with QoS guarantees. The proposed framework dynamically

adapts itself to solve the RRA problem desired by the operator. Also, the pro-

posed solutions to those problems utilize the CMAB tool. This tool achieves

good performance even when working with limited/scarce information, which is

one of the challenges of massive MIMO. Therefore, we utilize only the statistical

CSI to schedule the UEs, which reduces the signal overhead. Also, since we are

proposing a CMAB framework that learns by trial and error, we reduce even

more the signaling overhead by considering that only the scheduled UEs have

to feed back their equivalent instantaneous CSI. Moreover, the precoders are

calculated only for the scheduled UEs, which avoids the computation for every

scheduling possibility. Simulation results show that the baseline algorithms

are outperformed by the proposed solutions in low and high mobility scenarios.

Also, the results show that the learning algorithms are robust even when the

scenario gets more dynamic.

The contents of this chapter can be extended in some directions. In the

following, some of the possible future works are pointed out:
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• Extend the scenario to consider multiple RBs. One possibility is to apply

the proposed CMAB framework iteratively at each RB and evaluate its per-

formance. Another possibility is to adapt the proposed CMAB framework

to consider multiple RBs.

• Consider another bandit algorithm instead of 𝜖-greedy, such as upper

confidence bandit or gradient bandit.

• Extend the scenario to consider a model of network traffic. One possibility

is to adapt the proposed CMAB framework to consider the network traffic

as context to decide which UEs should be scheduled.

• Extend the scenario to consider other QoS requirements, such as packet

delay, latency and jitter.
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Chapter 5
Conclusions

As presented in Chapter 1, the main purpose of this thesis is to study

solutions based on optimization and RL to address RRA problems in massive

MIMO networks. The review in Chapter 1 presented some solutions pointed by

the research community and industry to meet the main requirements of 5G.

The reviewed technologies are massive MIMO, mmWave and network slicing.

Besides those technologies having their own benefits and challenges, this thesis

focuses on massive MIMO technology. We highlighted the benefits of massive

MIMO achieved by the higher number of antenna elements, such as the higher

data rates and number of served UEs, and the channel hardening effect. Also

we reviewed some of the challenges of FDD massive MIMO systems, such as the

large amount of required RF chains and the limited feedback channel. These

challenges do not happen for time division duplex (TDD) systems since they

can take advantage of some features, such as channel reciprocity. However,

most of the current wireless networks are based in FDD systems and it is still

favored by network operators, reinforcing the study of FDD massive MIMO

systems. We presented the hybrid precoding as a scheme adopted by the

academy and industry to deal with the challenge of needing a large number

of required RF chains. This scheme links a smaller number of RF chains to a

large number of antennas. Lastly, in Chapter 1 we presented a review of RRA

and RL techniques. More specifically, we highlighted the particular case of RL

tools known as CMAB.

We present in Chapter 2 the system model considered for all the chapters of

this thesis. In this chapter, the considered spatial covariance matrix and its

eigendecomposition are described. Also, we describe the clustering procedure

which is used in all the chapters of this thesis. This procedure divides the

UEs into clusters containing spatially correlated UEs by using a clustering

algorithm that subsequently reduces the SDMA grouping search space. After
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that, we describe the hybrid precoding scheme and received signal models.

Furthermore, we describe how the SINR and data rate are calculated.

In Chapter 3, we propose a framework using optimization tools to deal with

RRA problems in massive MIMO networks. The proposed framework has three

steps: clustering, grouping, and scheduling. The clustering step is done as

explained previously. The grouping procedure utilizes intelligent strategies to

build several efficient SDMA groups in terms of SE. Finally, in the scheduling

procedure we assign RBs to build SDMA groups in the grouping step, aiming

at optimizing a predefined objective.

This way, in Chapter 3 we first deal with the RRA problem of maximizing

the data rate considering only one RB. Since this problem only has one RB, the

grouping and scheduling procedure are done together. Therefore, we formulate

this problem as a binary quadratic problem which was solved using BB and

a proposed low complexity algorithm. Our proposed low complexity solution

is evaluated against the BB and a baseline solution. Simulation results show

that our proposed solution performs better in terms of SE than the baseline

solution and offers a good trade-off between computation complexity and

system performance against the BB algorithm. Moreover, we also show that

a suitable trade-off between the spatial channel correlation and channel gain

should be chosen to improve the system performance.

After that, in Chapter 3, we extended the previous problem to solve the RRA

problem of maximizing the system data rate considering multiple RBs, services

and QoS requirements. Here, since we considered multiple RBs, all the steps of

the framework are utilized. The clustering step is done as explained previously.

A binary quadratic problem that builds multiple groups and considers fairness

is formulated and applied in the grouping step. The grouping step exploits the

channel hardening characteristic generating a set of SDMA groups suitable

for all RBs. In the scheduling step, the assignment of RBs to the previously

generated SDMA groups is done aiming at maximizing the data rate and meeting

the QoS requirements. We propose low complexity solutions to the grouping

and scheduling steps evaluating them separately against optimal and baseline

solutions. Simulation results show that our proposed framework achieves a

good trade-off in terms of SE and outage against optimal and baseline solutions,

especially in low and moderate system loads. Moreover, we also show that a

suitable trade-off between the spatial channel correlation and channel gain

should be chosen to improve the system performance.

In Chapter 4, we proposed a framework using CMAB tools to deal with

RRA problems in massive MIMO networks. The proposed CMAB framework
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dinamically configures/adapts itself to solve the RRA problems of maximizing

the data rate, maximizing the data rate with fairness guarantees, or maximizing

the data rate with QoS guarantees. We take advantage of the clustering and

ZF precoding to reduce the scheduling search space. This way, we consider

that the BS is the physical entity and the UEs’ clusters are the logical entities

(virtual agents). Therefore, since we are using CMAB theory, the virtual agents

learn from the past experiences the best policy to schedule the UEs aiming

at achieving one of the previously mentioned objectives. Also, the signaling

overhead is reduced by considering that only the scheduled UEs have to

feed back their equivalent instantaneous CSI, which is used to calculate the

system data rate (reward). Simulation results show that the baseline algorithms

are outperformed by the proposed solutions. Also, the results show that the

learning algorithms are robust even when the scenario gets more dynamic (UEs

moving at different speeds).



96

References

[1] W. Hong, Z. H. Jiang, C. Yu, D. Hou, H. Wang, C. Guo, Y. Hu, L. Kuai, Y.

Yu, Z. Jiang, Z. Chen, J. Chen, Z. Yu, J. Zhai, N. Zhang, L. Tian, F. Wu, G.

Yang, Z. C. Hao, and J. Y. Zhou, “The role of millimeter-wave technologies

in 5G/6G wireless communications”, IEEE Journal of Microwaves, vol. 1,

no. 1, pp. 101–122, 2021. DOI: 10.1109/JMW.2020.3035541.

[2] H. Fourati, R. Maaloul, and L. Chaari, “A survey of 5G network systems:

challenges and machine learning approaches”, in International Journal
of Machine Learning and Cybernetics, Aug. 2020. DOI: 10.1007/s13042-

020-01178-4.

[3] N. Al-Falahy and O. Y. Alani, “Technologies for 5G Networks: challenges

and opportunities”, IT Professional, vol. 19, no. 1, pp. 12–20, 2017. DOI:

10.1109/MITP.2017.9.

[4] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza, “A survey of

machine learning techniques applied to self-organizing cellular networks”,

IEEE Communications Surveys Tutorials, vol. 19, no. 4, pp. 2392–2431,

2017. DOI: 10.1109/COMST.2017.2727878.

[5] M. Agiwal, A. Roy, and N. Saxena, “Next Generation 5G Wireless Networks:

A Comprehensive Survey”, vol. 18, no. 3, pp. 1617–1655, 2016. DOI:

10.1109/COMST.2016.2532458.

[6] B. Wang, F. Gao, S. Jin, H. Lin, and G. Y. Li, “Spatial- and frequency-

wideband effects in millimeter-wave massive MIMO systems”, IEEE Trans-
actions on Signal Processing, vol. 66, no. 13, pp. 3393–3406, Jul. 2018,

ISSN: 1941-0476. DOI: 10.1109/TSP.2018.2831628.

[7] W. Roh, J. Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and

F. Aryanfar, “Millimeter-wave beamforming as an enabling technology for

5g cellular communications: Theoretical feasibility and prototype results”,

https://doi.org/10.1109/JMW.2020.3035541
https://doi.org/10.1007/s13042-020-01178-4
https://doi.org/10.1007/s13042-020-01178-4
https://doi.org/10.1109/MITP.2017.9
https://doi.org/10.1109/COMST.2017.2727878
https://doi.org/10.1109/COMST.2016.2532458
https://doi.org/10.1109/TSP.2018.2831628


REFERENCES 97

IEEE Communications Magazine, vol. 52, no. 2, pp. 106–113, Feb. 2014,

ISSN: 0163-6804. DOI: 10.1109/MCOM.2014.6736750.

[8] W. V. F. Mauricio, T. F. Maciel, A. Klein, and F. R. M. Lima, “Learning-

based scheduling: contextual bandits for massive MIMO systems”, in

2020 IEEE International Conference on Communications Workshops (ICC
Workshops), 2020, pp. 1–6. DOI: 10.1109/ICCWorkshops49005.2020.

9145188.

[9] H. Yu, H. Lee, and H. Jeon, “What is 5G? Emerging 5G mobile services

and network requirements”, Sustainability, vol. 9, no. 10, Oct. 2017.

[10] I. A. Hemadeh, K. Satyanarayana, M. El-Hajjar, and L. Hanzo, “Millimeter-

wave communications: Physical channel models, design considerations,

antenna constructions, and link-budget”, vol. 20, no. 2, pp. 870–913,

2018.

[11] M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S. Rappaport,

and E. Erkip, “Millimeter wave channel modeling and cellular capacity

evaluation”, vol. 32, no. 6, pp. 1164–1179, 2014.

[12] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network

slicing in 5G: survey and challenges”, IEEE Communications Magazine,

vol. 55, no. 5, pp. 94–100, 2017. DOI: 10.1109/MCOM.2017.1600951.

[13] ITU-R, “IMT vision – framework and overall objectives of the future devel-

opment of IMT for 2020 and beyond”, Recommendation ITU-R M.2083-0,

2015. [Online]. Available: https://www.itu.int/rec/R-REC-M.2083

(visited on 10/19/2018).

[14] ITU, IMT-2020 network high level requirements - how african countries
can cope. [Online]. Available: https://www.itu.int/en/ITU-T/

Workshops-and-Seminars/standardization/20170402/Documents/

S2_4.%5C%20Presentation_IMT%5C%202020%5C%20Requirements-

how%5C%20developing%5C%20countries%5C%20can%5C%20cope.pdf.

[15] E. Björnson, E. G. Larsson, and T. L. Marzetta, “Massive MIMO: Ten

myths and one critical question”, vol. 54, no. 2, pp. 114–123, 2016.

[16] V. F. Monteiro, I. L. da Silva, and F. R. P. Cavalcanti, “5G Measurement

Adaptation Based on Channel Hardening Occurrence”, IEEE Communica-
tions Letters, vol. 23, no. 9, pp. 1598–1602, 2019. DOI: 10.1109/LCOMM.

2019.2926268.

https://doi.org/10.1109/MCOM.2014.6736750
https://doi.org/10.1109/ICCWorkshops49005.2020.9145188
https://doi.org/10.1109/ICCWorkshops49005.2020.9145188
https://doi.org/10.1109/MCOM.2017.1600951
https://www.itu.int/rec/R-REC-M.2083
https://www.itu.int/en/ITU-T/Workshops-and-Seminars/standardization/20170402/Documents/S2_4.%5C%20Presentation_IMT%5C%202020%5C%20Requirements-how%5C%20developing%5C%20countries%5C%20can%5C%20cope.pdf
https://www.itu.int/en/ITU-T/Workshops-and-Seminars/standardization/20170402/Documents/S2_4.%5C%20Presentation_IMT%5C%202020%5C%20Requirements-how%5C%20developing%5C%20countries%5C%20can%5C%20cope.pdf
https://www.itu.int/en/ITU-T/Workshops-and-Seminars/standardization/20170402/Documents/S2_4.%5C%20Presentation_IMT%5C%202020%5C%20Requirements-how%5C%20developing%5C%20countries%5C%20can%5C%20cope.pdf
https://www.itu.int/en/ITU-T/Workshops-and-Seminars/standardization/20170402/Documents/S2_4.%5C%20Presentation_IMT%5C%202020%5C%20Requirements-how%5C%20developing%5C%20countries%5C%20can%5C%20cope.pdf
https://doi.org/10.1109/LCOMM.2019.2926268
https://doi.org/10.1109/LCOMM.2019.2926268


REFERENCES 98

[17] H. Q. Ngo and E. G. Larsson, “No downlink pilots are needed in TDD

massive MIMO”, IEEE Transactions on Wireless Communications, vol. 16,

no. 5, pp. 2921–2935, May 2017, ISSN: 1536-1276. DOI: 10.1109/TWC.

2017.2672540.

[18] D. C. Araújo, T. Maksymyuk, A. L. F. de Almeida, T. Maciel, J. C. M.

Mota, and M. Jo, “Massive MIMO: survey and future research topics”, IET
Communications, vol. 10, no. 15, pp. 1938–1946, 2016. DOI: 10.1049/

iet-com.2015.1091.

[19] R. W. Heath, N. González-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed,

“An overview of signal processing techniques for millimeter wave MIMO

systems”, IEEE Journal of Selected Topics in Signal Processing, vol. 10,

no. 3, pp. 436–453, Apr. 2016, ISSN: 1932-4553. DOI: 10.1109/JSTSP.

2016.2523924.

[20] E. Björnson, When will hybrid beamforming disappear? [Online]. Avail-

able: https://ma-mimo.ellintech.se/2019/05/02/when-will-

hybrid-beamforming-disappear/.

[21] M. Rihan, T. Abed Soliman, C. Xu, L. Huang, and M. I. Dessouky, “Tax-

onomy and performance evaluation of hybrid beamforming for 5G and

beyond systems”, vol. 8, pp. 74 605–74 626, 2020.

[22] M. Soleimani, R. C. Elliott, W. A. Krzymie, J. Melzer, and P. Mousavi,

“Hybrid beamforming for mmWave massive MIMO systems employing

DFT-assisted user clustering”, IEEE Transactions on Vehicular Technol-
ogy, vol. 69, no. 10, pp. 11 646–11 658, 2020. DOI: 10.1109/TVT.2020.

3015787.

[23] M. Dottling, M. Sternad, G. Klang, J. von Hafen, and M. Olsson, “Inte-

gration of spatial processing in the WINNER B3G air interface design”,

in Proceedings of the IEEE Vehicular Technology Conference (VTC), vol. 1,

2006, pp. 246–250. DOI: 10.1109/VETECS.2006.1682813.

[24] T. F. Maciel and A. Klein, “On the performance, complexity, and fairness

of suboptimal resource allocation for multiuser MIMO-OFDMA systems”,

vol. 59, no. 1, pp. 406–419, 2010, ISSN: 0018-9545. DOI: 10.1109/TVT.

2009.2029438.

[25] M. Majidzadeh and M. Eslami, “A novel suboptimal SDMA grouping algo-

rithm for multiuser MIMO-OFDMA systems”, in Proc. Iranian Conference
on Electrical Engineering (ICEE), 2014, pp. 1805–1810. DOI: 10.1109/

IranianCEE.2014.6999832.

https://doi.org/10.1109/TWC.2017.2672540
https://doi.org/10.1109/TWC.2017.2672540
https://doi.org/10.1049/iet-com.2015.1091
https://doi.org/10.1049/iet-com.2015.1091
https://doi.org/10.1109/JSTSP.2016.2523924
https://doi.org/10.1109/JSTSP.2016.2523924
https://ma-mimo.ellintech.se/2019/05/02/when-will-hybrid-beamforming-disappear/
https://ma-mimo.ellintech.se/2019/05/02/when-will-hybrid-beamforming-disappear/
https://doi.org/10.1109/TVT.2020.3015787
https://doi.org/10.1109/TVT.2020.3015787
https://doi.org/10.1109/VETECS.2006.1682813
https://doi.org/10.1109/TVT.2009.2029438
https://doi.org/10.1109/TVT.2009.2029438
https://doi.org/10.1109/IranianCEE.2014.6999832
https://doi.org/10.1109/IranianCEE.2014.6999832


REFERENCES 99

[26] K. B. Letaief and Y. J. Zhang, “Dynamic multiuser resource allocation

and adaptation for wireless systems”, vol. 13, no. 4, pp. 38–47, 2006,

ISSN: 1536-1284. DOI: 10.1109/MWC.2006.1678164.

[27] W. V. F. Mauricio, D. C. Araujo, T. F. Maciel, and F. R. M. Lima, “A

framework for radio resource allocation and sdma grouping in massive

mimo systems”, IEEE Access, vol. 9, pp. 61 680–61 696, 2021. DOI: 10.

1109/ACCESS.2021.3074360.

[28] M. Moretti, L. Sanguinetti, and X. Wang, “Resource Allocation for Power

Minimization in the Downlink of THP-Based Spatial Multiplexing MIMO-

OFDMA Systems ”, vol. 64, no. 1, pp. 405–411, 2015. DOI: 10.1109/TVT.

2014.2320587.

[29] J. Nam, A. Adhikary, J. Ahn, and G. Caire, “Joint spatial division and

multiplexing: opportunistic beamforming, user grouping and simplified

downlink scheduling”, vol. 8, no. 5, pp. 876–890, Oct. 2014. DOI: 10.

1109/JSTSP.2014.2313808.

[30] Y. J. Zhang and K. B. Letaief, “An Efficient Resource-Allocation Scheme

for Spatial Multiuser Access in MIMO/OFDM Systems ”, vol. 53, no. 1,

pp. 107–116, 2005. DOI: 10.1109/TCOMM.2004.840666.

[31] S. Boyd and L. Vandenberghe, Convex optimization, 1st. Cambridge Uni-

versity Press, 2004.

[32] W. V. F. Mauricio, D. C. Araujo, F. H. C. Neto, F. R. M. Lima, and T. F.

Maciel, “A low complexity solution for resource allocation and SDMA

grouping in massive MIMO systems”, in Proceedings of the IEEE Inter-
national Symposium on Wireless Communications Systems (ISWCS), Aug.

2018, pp. 1–6. DOI: 10.1109/ISWCS.2018.8491076.

[33] F. D. Calabrese, L. Wang, E. Ghadimi, G. Peters, L. Hanzo, and P. Soldati,

“Learning radio resource management in RANs: framework, opportunities,

and challenges”, IEEE Communications Magazine, vol. 56, no. 9, pp. 138–

145, Sep. 2018, ISSN: 0163-6804. DOI: 10.1109/MCOM.2018.1701031.

[34] I. Ahmed and H. Khammari, “Joint machine learning based resource

allocation and hybrid beamforming design for massive MIMO systems”, in

2018 IEEE Globecom Workshops (GC Wkshps), Dec. 2018, pp. 1–6. DOI:

10.1109/GLOCOMW.2018.8644454.

[35] R. S. Sutton and A. G. Barto, Introduction to reinforcement learning, 1st.

Cambridge, MA, USA: MIT Press, 1998, ISBN: 0262193981.

https://doi.org/10.1109/MWC.2006.1678164
https://doi.org/10.1109/ACCESS.2021.3074360
https://doi.org/10.1109/ACCESS.2021.3074360
https://doi.org/10.1109/TVT.2014.2320587
https://doi.org/10.1109/TVT.2014.2320587
https://doi.org/10.1109/JSTSP.2014.2313808
https://doi.org/10.1109/JSTSP.2014.2313808
https://doi.org/10.1109/TCOMM.2004.840666
https://doi.org/10.1109/ISWCS.2018.8491076
https://doi.org/10.1109/MCOM.2018.1701031
https://doi.org/10.1109/GLOCOMW.2018.8644454


REFERENCES 100

[36] F. Hussain, S. A. Hassan, R. Hussain, and E. Hossain, “Machine learning

for resource management in cellular and IoT networks: potentials, current

solutions, and open challenges”, prePrint: arXiv, 2019. arXiv: 1907.08965

[cs.NI].

[37] M. Dudk, D. J. Hsu, S. Kale, N. Karampatziakis, J. Langford, L. Reyzin,

and T. Zhang, “Efficient optimal learning for contextual bandits”, CoRR,

vol. abs/1106.2369, 2011. arXiv: 1106.2369. [Online]. Available: http:

//arxiv.org/abs/1106.2369.

[38] M. Simsek, M. Bennis, and . Güvenç, “Learning based frequency and

time-domain inter-cell interference coordination in hetnets”, IEEE Trans-
actions on Vehicular Technology, vol. 64, no. 10, pp. 4589–4602, 2015.

DOI: 10.1109/TVT.2014.2374237.

[39] S. Jiang, Y. Chang, and K. Fukawa, “Distributed inter-cell interference

coordination for small cell wireless communications: a multi-agent deep

Q-learning approach”, in 2020 International Conference on Computer, In-
formation and Telecommunication Systems (CITS), 2020, pp. 1–5. DOI:

10.1109/CITS49457.2020.9232512.

[40] IBM, IBM ILOG CPLEX Optimizer. [Online]. Available: http://www-01.

ibm.com/software/integration/optimization/cplex-optimizer/.

[41] R. P. Antonioli, E. B. Rodrigues, T. F. Maciel, D. A. Sousa, and F. R. P.

Cavalcanti, “Adaptive resource allocation framework for user satisfaction

maximization in multi-service wireless networks”, Telecommunication
Systems, vol. 68, no. 2, pp. 259–275, Jun. 2018, ISSN: 1572-9451. DOI:

10.1007/s11235-017-0391-3.

[42] F. Zhao, W. Ma, M. Zhou, and C. Zhang, “A graph-based QoS-aware

resource management scheme for OFDMA femtocell networks”, IEEE
Access, vol. 6, pp. 1870–1881, 2018, ISSN: 2169-3536. DOI: 10.1109/

ACCESS.2017.2780520.

[43] J. Wang, Y. Zhang, H. Hui, and N. Zhang, “QoS-aware proportional

fair energy-efficient resource allocation with iimperfect CSI in downlink

OFDMA systems”, in 2015 IEEE 26th Annual International Symposium on
Personal, Indoor, and Mobile Radio Communications (PIMRC), Aug. 2015,

pp. 1116–1120. DOI: 10.1109/PIMRC.2015.7343465.

[44] T. Y. Young and T. W. Calvert, “Classification, estimation and pattern

recognition”, American Elsevier, 1974.

http://arxiv.org/abs/1907.08965
http://arxiv.org/abs/1907.08965
http://arxiv.org/abs/1106.2369
http://arxiv.org/abs/1106.2369
http://arxiv.org/abs/1106.2369
https://doi.org/10.1109/TVT.2014.2374237
https://doi.org/10.1109/CITS49457.2020.9232512
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
https://doi.org/10.1007/s11235-017-0391-3
https://doi.org/10.1109/ACCESS.2017.2780520
https://doi.org/10.1109/ACCESS.2017.2780520
https://doi.org/10.1109/PIMRC.2015.7343465


REFERENCES 101

[45] A. Destounis and M. Maso, “Adaptive clustering and CSI acquisition for

FDD massive MIMO systems with two-level precoding”, in 2016 IEEE
Wireless Communications and Networking Conference, Apr. 2016, pp. 1–

6. DOI: 10.1109/WCNC.2016.7564900.

[46] A. Maatouk, S. E. Hajri, M. Assaad, H. Sari, and S. Sezginer, “Graph

theory based approach to users grouping and downlink scheduling in

FDD massive MIMO”, in 2018 IEEE International Conference on Commu-
nications (ICC), May 2018, pp. 1–7. DOI: 10.1109/ICC.2018.8422263.

[47] X. Sun, X. Gao, G. Y. Li, and W. Han, “Agglomerative user clustering and

cluster scheduling for FDD massive MIMO systems”, IEEE Access, vol. 7,

pp. 86 522–86 533, 2019. DOI: 10.1109/ACCESS.2019.2923246.

[48] J. Chen and D. Gesbert, “Joint user grouping and beamforming for low

complexity massive MIMO systems”, in 2016 IEEE 17th International
Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), Jul. 2016, pp. 1–6. DOI: 10.1109/SPAWC.2016.7536906.

[49] G. Wang, J. Zhao, X. Bi, Y. Lu, and F. Hou, “User grouping and scheduling

for joint spatial division and multiplexing in FDD massive MIMO system”,

Int. J. Communications, Network and System Sciences, vol. 10, pp. 176–

185, 2017. DOI: 10.4236/ijcns.2017.108B019.

[50] A. Maatouk, S. E. Hajri, M. Assaad, and H. Sari, “On optimal scheduling

for joint spatial division and multiplexing approach in FDD massive

MIMO”, IEEE Transactions on Signal Processing, vol. 67, no. 4, pp. 1006–

1021, Feb. 2019, ISSN: 1941-0476. DOI: 10.1109/TSP.2018.2886163.

[51] G. Bu and J. Jiang, “Reinforcement learning-based user scheduling and

resource allocation for massive MU-MIMO system”, in 2019 IEEE/CIC
International Conference on Communications in China (ICCC), Aug. 2019,

pp. 641–646. DOI: 10.1109/ICCChina.2019.8855949.

[52] R. Chataut and R. Akl, “Channel gain based user scheduling for 5G

massive MIMO systems”, in 2019 IEEE 16th International Conference on
Smart Cities: Improving Quality of Life Using ICT IoT and AI (HONET-ICT),
Oct. 2019, pp. 049–053. DOI: 10.1109/HONET.2019.8908036.

[53] H. Xu, T. Zhao, S. Zhu, D. Lv, and J. Zhao, “Agglomerative group schedul-

ing for mmWave massive MIMO under hybrid beamforming architecture”,

in 2018 IEEE 18th International Conference on Communication Technol-
ogy (ICCT), Oct. 2018, pp. 347–351. DOI: 10.1109/ICCT.2018.8600015.

https://doi.org/10.1109/WCNC.2016.7564900
https://doi.org/10.1109/ICC.2018.8422263
https://doi.org/10.1109/ACCESS.2019.2923246
https://doi.org/10.1109/SPAWC.2016.7536906
https://doi.org/10.4236/ijcns.2017.108B019
https://doi.org/10.1109/TSP.2018.2886163
https://doi.org/10.1109/ICCChina.2019.8855949
https://doi.org/10.1109/HONET.2019.8908036
https://doi.org/10.1109/ICCT.2018.8600015


REFERENCES 102

[54] Z. Jiang, S. Chen, S. Zhou, and Z. Niu, “Joint user scheduling and beam

selection optimization for beam-based massive MIMO downlinks”, IEEE
Transactions on Wireless Communications, vol. 17, no. 4, pp. 2190–2204,

Apr. 2018, ISSN: 1558-2248. DOI: 10.1109/TWC.2018.2789895.

[55] N. W. Moe Thet, T. Baykas, and M. K. Ozdemir, “Performance analysis

of user scheduling in massive MIMO with fast moving users”, in 2019
IEEE 30th Annual International Symposium on Personal, Indoor and Mo-
bile Radio Communications (PIMRC), Sep. 2019, pp. 1–6. DOI: 10.1109/

PIMRC.2019.8904133.

[56] A. Ortiz, A. Asadi, M. Engelhardt, A. Klein, and M. Hollick, “CBMoS:

combinatorial bandit learning for mode selection and resource allocation

in D2D systems”, IEEE Journal on Selected Areas in Communications,

vol. 37, no. 10, pp. 2225–2238, Oct. 2019, ISSN: 1558-0008. DOI: 10.

1109/JSAC.2019.2933764.

[57] P. K. Tathe and M. Sharma, “Dynamic actor-critic: reinforcement learn-

ing based radio resource scheduling for LTE-advanced”, in 2018 Fourth
International Conference on Computing Communication Control and Au-
tomation (ICCUBEA), Aug. 2018, pp. 1–4. DOI: 10.1109/ICCUBEA.2018.

8697808.

[58] I. Comsa, S. Zhang, M. E. Aydin, P. Kuonen, Y. Lu, R. Trestian, and

G. Ghinea, “Towards 5G: a reinforcement learning-based scheduling

solution for data traffic management”, IEEE Transactions on Network
and Service Management, vol. 15, no. 4, pp. 1661–1675, Dec. 2018, ISSN:

2373-7379. DOI: 10.1109/TNSM.2018.2863563.

[59] D. C. Araújo, E. Karipidis, A. L. F. de Almeida, and J. C. M. Mota,

“Hybrid beamforming design with finite-resolution phase-shifters for

frequency selective massive MIMO channels”, in 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Mar.

2017, pp. 6498–6502. DOI: 10.1109/ICASSP.2017.7953408.

[60] T. Y. Young and T. W. Calvert, “Classification, estimation and pattern

recognition”, American Elsevier, 1974.

[61] F. H. Costa Neto, D. Costa Araújo, and T. Ferreira Maciel, “Hybrid beam-

forming design based on unsupervised machine learning for millimeter

wave systems”, International Journal of Communication Systems, 2020.

DOI: 10.1002/dac.4276.

https://doi.org/10.1109/TWC.2018.2789895
https://doi.org/10.1109/PIMRC.2019.8904133
https://doi.org/10.1109/PIMRC.2019.8904133
https://doi.org/10.1109/JSAC.2019.2933764
https://doi.org/10.1109/JSAC.2019.2933764
https://doi.org/10.1109/ICCUBEA.2018.8697808
https://doi.org/10.1109/ICCUBEA.2018.8697808
https://doi.org/10.1109/TNSM.2018.2863563
https://doi.org/10.1109/ICASSP.2017.7953408
https://doi.org/10.1002/dac.4276


REFERENCES 103

[62] Y. Xu, G. Yue, and S. Mao, “User grouping for massive MIMO in FDD

systems: new design methods and analysis”, IEEE Access, vol. 2, pp. 947–

959, 2014, ISSN: 2169-3536. DOI: 10.1109/ACCESS.2014.2353297.

[63] G. W. Milligan and M. C. Cooper, “An examination of procedures for deter-

mining the number of clusters in a data set”, Psychometrika, vol. 50, no. 2,

pp. 159–179, Jun. 1985, ISSN: 1860-0980. DOI: 10.1007/BF02294245.

[Online]. Available: https://doi.org/10.1007/BF02294245.

[64] L. Kaufman and P. Rousseeuw, Finding groups in data: an introduction to
cluster analysis. Wiley, 1990.

[65] G. H. Golub and C. F. van Loan, Matrix Computations, Fourth. JHU

Press, 2013, ISBN: 1421407949 9781421407944. [Online]. Available:

http://www.cs.cornell.edu/cv/GVL4/golubandvanloan.htm.

[66] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, Third Edition, 3rd. The MIT Press, 2009, ISBN: 0262033844.

[67] E. Castaneda, A. Silva, A. Gameiro, and M. Kountouris, “An overview on

resource allocation techniques for multi-user MIMO systems”, vol. 19,

no. 1, pp. 239–284, Firstquarter 2017. DOI: 10.1109/COMST.2016.

2618870.

[68] T. M. Cover and J. A. Thomas, Elements of information theory, 2nd, J. W.

bibinitperiod Sons, Ed. 2006, ISBN: 978-0471241959.

[69] V. Kumar and N. B. Mehta, “Modeling and analysis of differential CQI

feedback in 4G/5G OFDM cellular systems”, IEEE Transactions on Wire-
less Communications, vol. 18, no. 4, pp. 2361–2373, Apr. 2019, ISSN:

1536-1276. DOI: 10.1109/TWC.2019.2903047.

[70] F. R. M. Lima, T. F. Maciel, W. C. Freitas, and F. R. P. Cavalcanti, “Im-

proved spectral efficiency with acceptable service provision in multiuser

MIMO scenarios”, vol. 63, no. 6, pp. 2697–2711, 2014, ISSN: 0018-9545.

DOI: 10.1109/TVT.2013.2293333.

[71] G. Sierksma, Linear and integer programming: theory and practice, Sec-
ond Edition, ser. Advances in Applied Mathematics. Taylor & Francis,

2001, ISBN: 9780824706739.

[72] R. C. Browning, E. A. Baker, J. A. Herron, and R. Kram, “Effects of obesity

and sex on the energetic cost and preferred speed of walking.”, Journal
of applied physiology, vol. 100 2, pp. 390–8, 2006.

https://doi.org/10.1109/ACCESS.2014.2353297
https://doi.org/10.1007/BF02294245
https://doi.org/10.1007/BF02294245
http://www.cs.cornell.edu/cv/GVL4/golubandvanloan.htm
https://doi.org/10.1109/COMST.2016.2618870
https://doi.org/10.1109/COMST.2016.2618870
https://doi.org/10.1109/TWC.2019.2903047
https://doi.org/10.1109/TVT.2013.2293333


REFERENCES 104

[73] Z. Wang, M. Li, Q. Liu, and A. L. Swindlehurst, “Hybrid precoder and

combiner design with low-resolution phase shifters in mmWave MIMO

systems”, IEEE Journal of Selected Topics in Signal Processing, vol. 12,

no. 2, pp. 256–269, May 2018, ISSN: 1941-0484. DOI: 10.1109/JSTSP.

2018.2819129.

[74] Z. Cheng, Z. Wei, and H. Yang, “Low-complexity joint user and beam

selection for beamspace mmWave MIMO systems”, IEEE Communications
Letters, vol. 24, no. 9, pp. 2065–2069, 2020. DOI: 10.1109/LCOMM.2020.

2995400.

[75] S. Jaeckel, L. Raschkowski, K. Börner, and L. Thiele, “QuaDRiGa: a 3-D

multicell channel model with time evolution for enabling virtual field

trials”, vol. 62, no. 6, pp. 3242–3256, Jun. 2014, ISSN: 0018-926X. DOI:

10.1109/TAP.2014.2310220.

[76] V. F. Monteiro, I. L. da Silva, and F. R. P. Cavalcanti, “5G measurement

adaptation based on channel hardening occurrence”, IEEE Communica-
tions Letters, vol. 23, no. 9, pp. 1598–1602, 2019.

[77] T. Van Chien, “Spatial resource allocation in massive mimo communi-

cations : From cellular to cell-free”, PhD thesis, Linköping University,

Faculty of Science Engineering, 2020, p. 66, ISBN: 9789179299415. DOI:

10.3384/diss.diva-162582.

[78] A. A. Zaidi, R. Baldemair, H. Tullberg, H. Bjorkegren, L. Sundstrom, J.

Medbo, C. Kilinc, and I. D. Silva, “Waveform and numerology to support

5G services and requirements”, vol. 54, no. 11, pp. 90–98, 2016. DOI:

10.1109/MCOM.2016.1600336CM.

[79] O. Caelen and G. Bontempi, “Improving the exploration strategy in ban-

dit algorithms”, in Learning and Intelligent Optimization, V. Maniezzo,

R. Battiti, and J.-P. Watson, Eds., Berlin, Heidelberg: Springer Berlin

Heidelberg, 2008, pp. 56–68, ISBN: 978-3-540-92695-5.

[80] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda, “Downlink

packet scheduling in LTE cellular networks: key design issues and a

survey”, IEEE Communications Surveys Tutorials, vol. 15, no. 2, pp. 678–

700, Second 2013. DOI: 10.1109/SURV.2012.060912.00100.

https://doi.org/10.1109/JSTSP.2018.2819129
https://doi.org/10.1109/JSTSP.2018.2819129
https://doi.org/10.1109/LCOMM.2020.2995400
https://doi.org/10.1109/LCOMM.2020.2995400
https://doi.org/10.1109/TAP.2014.2310220
https://doi.org/10.3384/diss.diva-162582
https://doi.org/10.1109/MCOM.2016.1600336CM
https://doi.org/10.1109/SURV.2012.060912.00100

	Title page
	Catalouguing
	Approval
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	List of Symbols
	Table of Contents
	Introduction
	Background
	Massive MIMO
	Hybrid Precoding
	Radio Resource Allocation
	Reinforcement Learning

	Objectives and Thesis Structure
	Related Works
	Scientific Productions

	System Model
	Clustering 
	Analog and Digital Precoding Design

	RRA in Massive MIMO Systems Using Optimization Tools
	Contributions and Chapter Organization
	Problem Definition
	Maximization of System Data Rate Considering One RB
	BF Algorithm
	Performance Evaluation

	Maximization of System Data Rate Considering Multiple RBs, Services, and QoS Requirements
	Grouping Procedure
	Grouping Procedure Proposed Algorithm
	Scheduling Procedure Optimal Solution
	Scheduling Procedure Low-Complexity Solution
	Performance Evaluation
	K-means Algorithm Evaluation (Step 1)
	Grouping Algorithm Evaluation (Step 2)
	Scheduling Algorithm Evaluation (Step 3)


	Conclusions

	RRA in Massive MIMO Systems Using RL Tools
	Contributions and Chapter Organization
	Action Space
	Maximum Throughput Solution 
	Maximum Throughput with Fairness Guarantees
	Maximum Throughput with QoS Guarantees
	Proposed Framework
	Signaling Overhead Reduction

	Numerical Results
	Max Rate Evaluation
	Maximum Throughput with Fairness Guarantees Evaluation
	Maximum Throughput with QoS Guarantees Evaluation

	Conclusions

	Conclusions
	References

