Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/63686
Tipo: Artigo de Evento
Título: Surrogate-based optimization of functionally graded plates under thermomechanical loadin
Título em inglês: Surrogate-based optimization of functionally graded plates under thermomechanical loadin
Autor(es): Passos, Igor Lira
Ribeiro, Leonardo Gonçalves
Parente Junior, Evandro
Melo, Antônio Macário Cartaxo de
Palavras-chave: Functionally graded materials;Bio - Inspired algorithms;Surrogate modeling
Data do documento: 2021
Instituição/Editor/Publicador: https://cilamce.com.br/anais/index.php?ano=2021
Citação: PASSOS, Igor Lira; RIBEIRO, Leonardo Gonçalves; PARENTE JÚNIOR, Evandro; MELO, Antônio Macário Cartaxo de. Surrogate-based optimization of functionally graded plates under thermomechanical loadin. In: JOINT IBERO-LATIN-AMERICAN CONGRESS ON COMPUTATIONAL METHODS IN ENGINEERING-CILAMCE, XLII.; PAN-AMERICAN CONGRESS ON COMPUTATIONAL MECHANICS-PANACM, ABMEC-IACM, III., 9-12nov. 2021., Rio de Janeiro, Brazil. Proceedings[...], Rio de Janeiro, Brazil, 2021.
Abstract: Efficient designs for a Functionally Graded Plates (FGP) can be defined via structural optimization. Usually, bio-inspired algorithms are employed in order to carry out the optimization process. However, when analyses are very time-demanding, the process may be too costly, since hundreds or even thousands of analyses may be required. In this work, Sequential Approximate Optimization is employed to provide a more efficient approach. This paper focuses on the maximization of buckling temperature of a ceramic-metal FGP. B-Splines are used to define a continuous material gradation along the thickness direction. Effective material properties are evaluated by the rule of mixtures. The Particle Swarm Optimization (PSO) is applied for structural optimization and Isogeometric Analysis (IGA) is employed to evaluate the structural responses. Then, Sequential Approximate Optimization (SAO) is carried out to reduce the computational cost using Kriging to fit an approximate response surface. A comparison between conventional optimization and SAO is performed, and results show that SAO achieved the optimum design much earlier the conventional approach, requiring fewer high-fidelity evaluations.
URI: http://www.repositorio.ufc.br/handle/riufc/63686
ISSN: 2675-6269
Aparece nas coleções:DECC - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2021_eve_ilpassos.pdf661,51 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.