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Abstract. Efficient designs for a Functionally Graded Plates (FGP) can be defined via structural optimization.
Usually, bio-inspired algorithms are employed in order to carry out the optimization process. However, when
analyses are very time-demanding, the process may be too costly, since hundreds or even thousands of analyses
may be required. In this work, Sequential Approximate Optimization is employed to provide a more efficient
approach. This paper focuses on the maximization of buckling temperature of a ceramic-metal FGP. B-Splines
are used to define a continuous material gradation along the thickness direction. Effective material properties are
evaluated by the rule of mixtures. The Particle Swarm Optimization (PSO) is applied for structural optimization
and Isogeometric Analysis (IGA) is employed to evaluate the structural responses. Then, Sequential Approximate
Optimization (SAO) is carried out to reduce the computational cost using Kriging to fit an approximate response
surface. A comparison between conventional optimization and SAO is performed, and results show that SAO
achieved the optimum design much earlier the conventional approach, requiring fewer high-fidelity evaluations.
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1 Introduction

Functionally Graded Materials (FGMs) are a class of smart composite materials which have been gaining in-
terest in various industries, such as aerospacial, biomedical and energy. Under thermo-mechanical loadings, FGMs
present a better performance than traditional composites since failure modes such as debonding and delamination
do not occur [1].

This work studies ceramic-metal Functionally Graded Plates (FGPs) where the material changes smoothly
through the thickness direction from a ceramic, which presents high stiffness and low thermal conductivity, to a
metal, which presents better ductility and toughness. To fully explore the benefits of these FGPs, the material
gradation can be defined by different methods, such as Power-law and B-Spline functions, to achieve the optimum
design for a desired structural behavior.

Bio-inspired algorithms, such as the Particle Swarm Optimization (PSO), are commonly employed for solving
structural optimization problems since no gradient information is required. Indeed, many researchers make use of
the PSO to optimize FG structures with great success [2, 3]. However, these algorithms often need to perform
hundreds or even thousands of function evaluations, which are a major hindrance when numerical methods, e.g.
Finite Element Method (FEM) and Isogeometric Analysis (IGA), are employed in the structural analysis.

To reduce the computational cost, Sequential Approximation Optimization (SAO) can be performed, where a
costly function is approximated by a surrogate model. New sampling points are then added in regions of interest to
improve the model accuracy in promising regions of the design space. This paper aims to perform SAO for FGPs
subjected to thermo-mechanical loadings, comparing this approach with the conventional optimization based on
the use of numerical methods to evaluate the structural responses. Structural analyses will be performed using
IGA. Kriging will be used to fit an approximate response surface, and new data points will be defined via the
maximization of the Expected Improvement (EI). Results will be compared in terms of accuracy and computational
efficiency.

The rest of the paper is organized as follows. In Section 2, the FGPs are described. In Section 3, PSO and
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its parameters are introduced. In section 4, the SAO approach is presented, and surrogate model building and
assessment of the EI are discussed. The results and conclusions are presented in Sections 5 and 6, respectively.

2 Functionally Graded Plates

On Functionally Graded Plates, the material composition smoothly changes in the structure’s domain. To
enhance design flexibility, a B-Spline will be employed to define the gradation along the thickness direction [3, 4]:

Vc(ξ) =

n∑
i=1

Bi,p(ξ)Vc,i , Vm(ξ) = 1− Vc(ξ) , ξ ∈ [0, 1] (1)

where Bi,p corresponds to B-Spline bases, p is the bases’ degree, n is the number of control points, and Vc,i is the
volume fraction for the i-th control point. B-splines bases are defined recursively using the Cox-de Boor formula
based on a knot vector [ ξ1, ξ2, ..., ξn+p+1] [3, 4].

Rule of mixtures is a very popular method to find equivalent material properties for the FGP [1]:

P = Pc Vc + Pm Vm (2)

where P represents an effective material properties (e.g. the Young’s modulus), and Pc and Pm are the properties
of ceramic and metal constituents, respectively. Due to its simplicity and popularity, the present work will make
use of this approach.

Since FGP can be subjected to a large temperature range, properties are assumed as temperature-dependent
for a more accurate model. Touloukian’s equation [5] uses Pi unique material coefficients to evaluate the material
property Pf at a temperature T :

Pf = P0(P−1T
−1 + 1 + P1T + P2T

2 + P3T
3) (3)

When considering thermal effects, the stresses (σ) can be computed from [6]:

σ = Q(ε− εth), with εth = [α∆T, α∆T, α∆T, 0, 0, 0]T (4)

where ε and εth are the total elastic and thermal strain vectors, α is the thermal expansion coefficient, ∆T is
the temperature change and Q is the elastic constitutive matrix. For a clamped FGP under thermal loading, dis-
placement constraints cause compressive stresses. As a consequence, thermal buckling occurs once a critical
temperature ∆Tcr is reached. Figure 1 depicts a clamped plate subjected to its critical temperature, considering a
uniform temperature distribution.

Figure 1. Critical thermal buckling mode

3 Particle Swarm Optimization

Particle Swarm Optimization is a stochastic meta-heuristic optimization algorithm initially developed by
Kennedy and Eberhart [7]. The algorithm starts by generating a set of particles at random within the design space.
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Each particle j has a position x(i)j and a velocity v(i)j , which guides the particle towards a possible optimum. The
superscript i denotes the current iteration. These vectors are iteratively updated by:

x(i+1)
j = x(i)j + v(i+1)

j , where v(i+1)
j = wvij + c1r1(x(i)p,j − x(i

j ) + c2r2(x(i)g,j − x(i)j ) (5)

where r1 and r2 are random numbers in the range [0, 1], x(i)p,j is the best position the particle has visited, and x(i)
g,j

is the best location ever visited by the swarm. The control parameters for this algorithm are the particle’s inertia w
and the cognitive and social factors c1 and c1, Unfeasible designs are penalized using an exterior penalty approach.
The swarm evolves into new generations until a stopping criterion is met, which may be related to a number of
stall generations (Gstall) or a maximum number of generations (Gmax).

To further improve PSO exploration capabilities, Barroso et al. [8] proposed the use of a mutation operator.
Once a new position xj is calculated at the i-th iteration, each variable x(i)j,k has a probability pmut of mutating to
a new value inside the bound constraints.

4 Sequential Approximate Optimization

Conventional optimization based on the evaluation of structural responses via numerical methods may be-
come very costly when hundreds of even thousands of design evaluations are required. To provide an efficient
optimization process, one may use Sequential Approximate Optimization (SAO). Based on a few high-fidelity
responses (evaluated by FEM or IGA), a surrogate model of a costly function is fitted, and used to guide in the
optimization process. New sampling points are then added, based on a chosen infill criterion [9, 10], to improve
the surrogate accuracy in promising regions of the design space.

In these cases, model performance is a function of the selected sampling points. First, the number of sampling
points is often defined based on the number of variables. In this work, different sample sizes will be tried out.
Initially, since no information about the function behavior is known, sampling points should be selected in a way
to ensure the coverage of the design space [9]. Thus, the location of these points is defined using a Design of
Experiments (DoE) technique, such as the Latin Hypercube Sampling. This is an stochastic sampling technique,
and, to guarantee that the design is uniform, 20 different samples are generated, and the one where the minimum
distance between two points is maximized is selected to perform the model building [4].

After evaluation of the sampling points, a Kriging model is fitted, and is then used to guide the further
selection of new data points. This should be biased toward regions where the model is expected to improve upon
the optimum design, and should try to balance exploitation and exploration [10, 11]. These aspects will be further
described in the following sections.

4.1 Kriging

The Kriging model was first proposed by Krige [12], but was brougth to engineering design by Sacks et al.
[13]. In its general form, the model can be seen as the sum between a global trend g(x) and its autocorrelated
localized deviations Z(x):

ŷ(x) = g(x) + Z(x) (6)

For different types of Kriging, g(x) may assume different forms. In its most popular version, the Ordinary Kriging,
the global trend is given by a constant term µ. The localized deviations are assumed to be the realization of a
stochastic process with mean zero and covariance.

cov(y,y) = σ2 Ψ (7)

where σ2 is the process variance and Ψ is a correlation matrix, where Ψij = cor[yi, yj ]. The correlation between
two responses is drawn using an appropriate similarity-based kernel, such as the Gaussian:

cor [yi, yj ] = exp

(
−

m∑
k=1

θk |xi,k − xj,k|pk

)
(8)

The fitting of the Kriging model involves the definition of µ, σ2, θk, and pk. These can be defined by their
Maximum Likelihood Estimators (MLE). To that end, the ln-likelihood function is given by:

lnL = −n
2

ln (2π)− n

2
ln (σ2)− 1

2
ln |Ψ| − (y − 1µ)T Ψ−1 (y − 1µ)

2σ2
(9)
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by differentiating in terms of µ and σ2 and equating to zero, one finds the MLE for the mean and the variance:

µ̂ =
1TΨ−1y

1TΨ−11
, and σ̂2 =

(y − 1µ̂)TΨ−1(y − 1µ̂)

n
(10)

The concentrated ln-likelihood function is obtained by replacing the estimators of Eq. (10) into (9) and removing
the constant terms:

lnL ≈ −n
2

ln(σ̂2)− 1

2
ln |Ψ| (11)

Unfortunately, the hyper-parameters (pk and θk) can not be found by the same analytical procedure. For simplifica-
tion purposes, we adopt pk = 2.0. Then, the definition of θk comes from the solution of the following optimization
problem:  minimize − lnL(θ)

where θL ≤ θ ≤ θU
(12)

Finally, after all parameters have been set, the Kriging model prediction is given by [9]:

ŷ(x) = µ̂+ψT Ψ−1 (y − 1 µ̂) (13)

4.2 Infill criteria

In SAO, the selection of new points should consider exploitation, related to regions where the model predic-
tion is minimized, and exploration, related to regions where the model uncertainty is higher. The Kriging model
has a very nice way to quantify model uncertainty by the evaluation of its posterior variance [14]:

ŝ2(x) = σ2
(

1−ψTΨ−1ψ
)

(14)

Figure 2 shows the confidence interval (ŷ ± ŝ) for the Kriging prediction considering a one-dimensional function.
At the sampling points, since there is no uncertainty regarding their true response, ŝ(x) = 0. However, ŝ(x)
increases as x gets farther from the sampling points.
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Figure 2. Kriging confidence interval for a one-dimensional function.

The location of new sampling points is often defined by the optimization of a chosen acquisition function. To
balance exploitation and exploration, the addition of the point that maximizes the Expected Improvement (EI) can
be performed [10]. The EI is given by:

E[I(x)] = (ymin − ŷ(x))
1

2

[
1 + erf

(
ymin − ŷ(x)

ŝ
√

2

)]
+ ŝ

1√
2π

exp

[
−1

2

(
ymin − ŷ(x)

ŝ

)2
]

(15)

Figure 3 presents how the criterion behaves for subsequent iterations. In the second iteration, the criterion is able
to select a point near the region of the global optimum. The global optimum is then found at the third iteration.
For problems with cheap constraints, these can be evaluated and, if a candidate solution is unfeasible, its EI is set
to zero.
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(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

Figure 3. Improvement of the model using the EI criterion.

5 Numerical example

The optimization of a clamped square FGP (a = b = 1 m, a/h = 100) is performed. Silicon nitride (Si3N4)
is used as a ceramic material alongside stainless steel (SUS304) as a metal. Both of their properties are presented
in Table 1. Effective properties are defined via the rule of mixtures as shown in Eq. (2). It is assumed that material
gradation along the thickness direction is symmetrical at mid-plane. Gradation is defined by a B-Spline using 9
control points, but, due to symmetry regarding the mid-plane, there are only 5 design variables.

Table 1. Material properties for Tref = 300 K

Material α [K−1] E [GPa] υ ρ [kg/m³]

SUS304 15.32× 10−6 207.79 0.30 8000

Si3N4 7.474× 10−6 322.27 0.30 2730

The plate is subjected to a uniform temperature distribution Tref = 300 K. The objective is to maximize the
critical temperature. Silicon nitride and stainless steel are assumed to cost Cc = 50 USD/kg and Cm = 3 USD/kg
respectively [15], making the plate’s price range [240, 1185] USD. It is then imposed a maximum cost of Ct = 600
USD. This problem can be expressed as: Maximize ∆Tcr(x), where x = (x1, x2, . . . , x5)

Subjected to Ccρc
1

h

∫ h/2

−h/2
Vcdz + Cmρm

1

h

∫ h/2

−h/2
Vmdz ≤ Ct

(16)

The performance of the optimization algorithms is evaluated in terms of Normalized Root Mean Squared Er-
ror (NRMSE), Wall-Clock Time (WCT), and Number of Evaluations (NE). A total of 10 runs is performed for each
case study and the average results (NRMSE, WCT, NE) are then calculated. For conventional optimization using
PSO, NE represents the average number of high-fidelity sampling points evaluated. For PSO, three population
sizes Np were tried out: 20, 40 and 80. Similarly, for SAO approaches, three different number of initial sampling
points Ni were tested: 5, 10 and 20. The stopping criteria adopted were Gmax = 50 and Gstall = 20, and the PSO
parameters used were w = 0.7 and c1 = c2 = 0.15. All numerical simulations were performed on a computer with
an I9-9820X, 3.30 GHz clock speed and 128 GB of RAM. No parallel processing was used.

Due to its higher stiffness and lower expansion factor, the ceramic material provides a better response when
the plate is subjected to thermal buckling. This way, a homogeneous ceramic plate, with x = 1, presents ∆Tcr =
44.81 K, while a fully metallic plate, x = 0, has a ∆Tcr = 21.87 K. Therefore, without the cost-related constraint,
the optimal design would be a homogeneous ceramic plate. However, considering the cost constraint, the optimum
is found at x = [1.0 1.0 0.5238 0.0 0.0], for which ∆Tcr = 32.22 K. Figure 4 describes the optimum design found.
The bottom and top surfaces are fully ceramic, and volume fraction varies to fully metallic material towards the
mid-plane. The buckling mode is similar to the one shown in Figure 1.

Table 2 presents a performance comparison of conventional and SAO approaches. All optimizations achieved
designs fairly close to the global optimum. For conventional optimization (PSO + IGA), the population with 40
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Figure 4. Volume fractions for optimum design

particles achieved the global optimum for all optimizations, but convergence is around 2 times slower compared
with the one using Np = 20.

Table 2. Performance of conventional and SAO approaches

PSO + IGA

Np ∆T cr NRMSE WCT (min) NE

20 32.21 0.01% 16.00 1014

40 32.22 0.00% 32.28 2040

80 32.22 0.00% 62.71 3952

SAO

Ni ∆T cr NRMSE WCT (min) NE

5 32.22 0.00% 1.48 30

10 32.22 0.00% 1.55 32

20 32.22 0.00% 2.39 41

On the other hand, the SAO approaches lead to a faster convergence, as WCT is significantly lower, while
also being more accurate, as all the optimizations achieved the global optimum with NRMSE = 0.00%. Moreover,
the Gstall stopping criterion was met, contrary to the conventional PSO, which performed the maximum number
of evaluations for most of the optimizations. The SAO using 5 initial sampling points was the best strategy found,
computing only 30 high-fidelity evaluations in total, while still able to find the global optimum. In fact, its WCT
was 1.48 minutes, which is around 10 times faster than conventional PSO optimization with 20 particles.

(a) Plate cost over iterations (b) Objective function over iterations

Figure 5. Convergence of the optimization methods throughout the iterations

Figure 5a depicts how the cost of the best design found changes over iterations. For PSO, each of the 50
iterations involves Np high-fidelity IGA evaluations. For the SAO approaches, each iteration performs only one
high-fidelity IGA evaluation, which is added to the sample. In all cases, the constraint was eventually active, and
the cost converged to Ct = 600 USD. For Np = 20 and Np = 40, this result was achieved after 30 iterations,
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while a faster convergence can be found for Np = 80, where this value was achieved after 15 iterations. On the
other hand, the SAO approaches found this value as soon as the first iteration.

Figure 5b then describes the improvement over the best response found throughout the iterations. As ex-
pected, the PSO with Np = 80 presents a steeper curve and a faster convergence, although more high-fidelity
evaluations were performed. The curves related to the SAO approaches are even steeper, and, for Ni = 20, the
curve is fairly close to a horizontal line, as the optimum design is found already in the first iteration.

6 Conclusion

In this paper, the maximization of the critical buckling temperature of a Functionally Graded Plate was per-
formed. The Particle Swarm Optimization algorithm was employed considering different population sizes. Overall,
all the optimizations achieved results close to the global optimum with great accuracy, presenting a relatively fast
convergence, especially for higher values of Np. However, higher Np also incur in a higher Wall-Clock Time.
The same problem was also solved using Sequential Approximate Optimization, which converged much faster,
with a higher accuracy, and with far fewer function evaluations, thus proving to be an excellent strategy to reduce
computational cost.
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