Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/61913
Tipo: | Artigo de Periódico |
Título : | Kriging-based optimization of functionally graded structures |
Autor : | Maia, Marina Alves Parente Junior, Evandro Melo, Antônio Macário Cartaxo de |
Palabras clave : | Kriging;Functionally graded materials;Sequential approximate optimization;Isogeometric analysis |
Fecha de publicación : | 2021 |
Editorial : | https://www.springer.com/journal/158/ |
Citación : | MAIA, Marina Alves; PARENTE JUNIOR, Evandro; MELO, Antônio Macário Cartaxo de. Kriging-based optimization of functionally graded structures. Structural and Multidisciplinary Optimization, v. 64, p.1887-1908, 2021. |
Abstract: | This work presents an efficient methodology for the optimum design of functionally graded structures using a Krigingbased approach. The method combines an adaptive Kriging framework with a hybrid particle swarm optimization (PSO) algorithm to improve the computational efficiency of the optimization process. In this approach, the surrogate model is used to replace the high-fidelity structural responses obtained by a NURBS-based isogeometric analysis. In addition, the impact of key factors on surrogate modelling, as the correlation function, the infill criterion used to update the surrogate model, and the constraint handling is assessed for accuracy, efficiency, and robustness. The design variables are related to the volume fraction distribution and the thickness. Displacement, fundamental frequency, buckling load, mass, and ceramic volume fraction are used as objective functions or constraints. The effectiveness and accuracy of the proposed algorithm are illustrated through a set of numerical examples. Results show a significant reduction in the computational effort over the conventional approach. |
URI : | http://www.repositorio.ufc.br/handle/riufc/61913 |
ISSN : | 1615-1488 online 1615-147X Print |
Derechos de acceso: | Acesso Aberto |
Aparece en las colecciones: | DECC - Artigos publicados em revistas científicas |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2021_art_mamaia.pdf | 3,05 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.