Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/61913
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorMaia, Marina Alves-
dc.contributor.authorParente Junior, Evandro-
dc.contributor.authorMelo, Antônio Macário Cartaxo de-
dc.date.accessioned2021-11-09T17:35:50Z-
dc.date.available2021-11-09T17:35:50Z-
dc.date.issued2021-
dc.identifier.citationMAIA, Marina Alves; PARENTE JUNIOR, Evandro; MELO, Antônio Macário Cartaxo de. Kriging-based optimization of functionally graded structures. Structural and Multidisciplinary Optimization, v. 64, p.1887-1908, 2021.pt_BR
dc.identifier.issn1615-1488 online-
dc.identifier.issn1615-147X Print-
dc.identifier.otherhttps://doi.org/10.1007/s00158-021-02949-5-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/61913-
dc.description.abstractThis work presents an efficient methodology for the optimum design of functionally graded structures using a Krigingbased approach. The method combines an adaptive Kriging framework with a hybrid particle swarm optimization (PSO) algorithm to improve the computational efficiency of the optimization process. In this approach, the surrogate model is used to replace the high-fidelity structural responses obtained by a NURBS-based isogeometric analysis. In addition, the impact of key factors on surrogate modelling, as the correlation function, the infill criterion used to update the surrogate model, and the constraint handling is assessed for accuracy, efficiency, and robustness. The design variables are related to the volume fraction distribution and the thickness. Displacement, fundamental frequency, buckling load, mass, and ceramic volume fraction are used as objective functions or constraints. The effectiveness and accuracy of the proposed algorithm are illustrated through a set of numerical examples. Results show a significant reduction in the computational effort over the conventional approach.pt_BR
dc.language.isopt_BRpt_BR
dc.publisherhttps://www.springer.com/journal/158/pt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectKrigingpt_BR
dc.subjectFunctionally graded materialspt_BR
dc.subjectSequential approximate optimizationpt_BR
dc.subjectIsogeometric analysispt_BR
dc.titleKriging-based optimization of functionally graded structurespt_BR
dc.typeArtigo de Periódicopt_BR
Aparece nas coleções:DECC - Artigos publicados em revistas científicas

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2021_art_mamaia.pdf3,05 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.