Please use this identifier to cite or link to this item: http://repositorio.ufc.br/handle/riufc/60116
Type: Tese
Title: Modeling and simulating of stainless steel joints by the Friction stir welding
Title in English: Modeling and simulating of stainless steel joints by the Friction stir welding
Authors: Silva, Yuri Cruz da
Advisor: Silva, Cleiton Carvalho
Co-advisor: Marcondes, Francisco
Keywords: Friction stir welding;Volume of fluid;Stainless steel;Dissimilar welding;Numerical simulation
Issue Date: 2021
Citation: SILVA, Yuri cruz da. Modeling and Simulating of stainless steel joints by Friction stir welding. 2021. 161 f. Tese (Doutorado em Engenharia e Ciência de Materiais) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia e Ciência de Materiais, Fortaleza, 2021.
Abstract in Brazilian Portuguese: Friction Stir Welding (FSW) é um método de soldagem de estado sólido desenvolvido em 1991 no The Welding Institute (TWI). Este método une materiais por meio de deformação plástica causada por uma ferramenta rotacional que se move entre a interface dos materiais. A comunidade científica tem estudado extensivamente esta técnica porque suas características únicas permitem excelentes resultados em comparação com os processos convencionais de soldagem por fusão. As baixas temperaturas e as altas taxas de deformação durante o processo favorecem a existência da recristalização dinâmica dos grãos, melhorando as propriedades mecânicas da região soldada. Simulações numéricas foram realizadas para entender os fenômenos que envolvem a união FSW dos aços AISI 304L e AISI 410S. Para isso, esta tese foi dividida em 4 capítulos. O Capítulo 5 abordou os modelos de viscosidade utilizados neste estudo e desenvolveu uma metodologia para determinar a viscosidade máxima a ser definida na simulação. Na sequência da tese, que compreende mais três capítulos, os dois seguintes abordaram a simulação do processo FSW aplicada a dois aços inoxidáveis diferentes: AISI 304L e AISI 410S. Estes aços foram escolhidos por sua aplicabilidade na indústria. Os materiais foram simulados como fluidos não newtonianos, onde sua viscosidade depende da temperatura do processo e da taxa de deformação. No Capítulo 6, foi feita uma simulação para a soldagem similar do aço inoxidável austenítico AISI 304L, possibilitando o cálculo da extensão das zonas de soldagem. Um parâmetro Y também foi desenvolvido, dependendo da viscosidade mínima, pressão aplicada e rotação. Este parâmetro auxilia na escolha de condições com menor possibilidade de formação de rebarbas. Partículas foram injetadas no modelo a fim de traçar seu caminho junto com a placa e a partir disso, prevemos regiões onde seriam formados defeitos do tipo buraco de minhoca. O Capítulo 7 focou no uso da temperatura simulada, que apresentou resultados muito próximos aos experimentais, associada à simulações termodinâmicas. Neste estudo, foi possível prever a formação de martensita e carbonetos de cromo (Cr23C6) em diferentes regiões da solda. O parâmetro Y foi aplicado a este material, e sua eficácia foi observada em todos os testes experimentais, prevendo as condições com mais rebarbas. No Capítulo 8, o método Volume of Fluid (VOF) foi aplicado ao modelo de simulação FSW já utilizado para simular a mistura desses materiais em soldagens dissimilares e possibilitou observar o fluxo dos materiais durante a soldagem e de que lado cada material deve ser empregado para obter os melhores resultados. Neste artigo também foi desenvolvida a simulação com um modelo mais realista da ferramenta, possibilitando o desenvolvimento de futuros trabalhos na área.
Abstract: Friction Stir Welding (FSW) is a solid-state welding method developed 1991 at The Welding Institute (TWI). This method joins materials through plastic deformation caused by a rotational tool that moves between the materials interface. The scientific community has extensively studied this technique because its unique characteristics allow excellent results compared with conventional fusion welding processes. The low temperatures and high deformation rates during the process favor the existence of the dynamic recrystallization of the grains, improving the welded region mechanical properties. Numerical simulations were performed to understand the phenomena that involve the FSW joining of the AISI 304L and the AISI 410S steels. For this, this thesis was divided into four chapters. The Chapter 5 addressed the viscosity models used in this study and developed a methodology to determine the maximum viscosity to be defined in the simulation. Following the thesis, which comprises three more chapters, the next two have addressed the FSW process simulation applied for two different stainless steels: AISI 304L and AISI 410S. Theses steels ware chosen for their applicability in the industry. The materials were simulated as non-Newtonian fluids, where their viscosity depends on the process temperature and the strain rate. In the Chapter 6, a simulation was made for the similar welding of AISI 304L austenitic stainless steel, making it possible to calculate the extent of the welding zones. A parameter Y was also developed, depending on the minimum viscosity, applied pressure, and rotation. This parameter assists in the choice of conditions with less possibility of burr formation. Particles were injected into the model in order to trace its path along with the plate, and from that, we predict regions where defects of the wormhole type would be formed. Chapter 7 focus was on using the simulated temperature, which presented results very close to the experimental ones and associating it with thermodynamic simulations. In this study, it was possible to predict the formation of martensite and chromium carbides (Cr23C6) in different regions of the weld. The parameter Y was applied to this material, and its effectiveness was observed in all experimental tests, predicting the conditions with more burrs. In the Chapter 8, the Volume of Fluid (VOF) method was applied to the FSW simulation model already used to simulate the mixture of these materials in dissimilar welding and made it possible to observe the materials flow during the welding, and which side each material should be employed to obtain the best results. In this chapter, the simulation with a more realistic model of the tool was also developed, enabling the development of future works in the area.
URI: http://www.repositorio.ufc.br/handle/riufc/60116
Appears in Collections:DEMM - Teses defendidas na UFC

Files in This Item:
File Description SizeFormat 
2021_tese_ycsilva.pdf90,71 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.