Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/60059
Tipo: | Artigo de Evento |
Título : | Algebraic Characterization of the Cost Function for Discrete Transversal Filters |
Título en inglés: | Algebraic Characterization of the Cost Function for Discrete Transversal Filters |
Autor : | Bluhm, Rafael de Carvalho Cavalcante, Charles Casimiro |
Palabras clave : | Cost Function;Correlation;Bilinear Transform;Tensor Product |
Fecha de publicación : | 2018 |
Editorial : | https://www.sbrt.org.br/sbrt2018 |
Citación : | BLUHM, Rafael de Carvalho; CAVALCANTE, Charles Casimiro. Algebraic characterization of the cost function for discrete transversal filters. In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS – SbrT, XXXVI., 16 a 19 set. 2018. Campina Grande-PB. Anais[…], Campina Grande-PB, 2018.p.598-599. |
Resumen en portugués brasileño: | This article deals with the algebraic structure of the real case cost function, present in the analysis of Wiener filters. The correlation written as a decomposable tensor comes from the isomorphism of the multiplication of inner products and linear operators, and for general bases does not have the same representation in terms of the components. This difference is the object of this study. |
Abstract: | This article deals with the algebraic structure of the real case cost function, present in the analysis of Wiener filters. The correlation written as a decomposable tensor comes from the isomorphism of the multiplication of inner products and linear operators, and for general bases does not have the same representation in terms of the components. This difference is the object of this study. |
URI : | http://www.repositorio.ufc.br/handle/riufc/60059 |
Aparece en las colecciones: | DETE - Trabalhos apresentados em eventos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2018_eve_rdecbluhm.pdf | 214,42 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.