Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/60059
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorBluhm, Rafael de Carvalho-
dc.contributor.authorCavalcante, Charles Casimiro-
dc.date.accessioned2021-08-20T12:17:43Z-
dc.date.available2021-08-20T12:17:43Z-
dc.date.issued2018-
dc.identifier.citationBLUHM, Rafael de Carvalho; CAVALCANTE, Charles Casimiro. Algebraic characterization of the cost function for discrete transversal filters. In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS – SbrT, XXXVI., 16 a 19 set. 2018. Campina Grande-PB. Anais[…], Campina Grande-PB, 2018.p.598-599.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/60059-
dc.description.abstractThis article deals with the algebraic structure of the real case cost function, present in the analysis of Wiener filters. The correlation written as a decomposable tensor comes from the isomorphism of the multiplication of inner products and linear operators, and for general bases does not have the same representation in terms of the components. This difference is the object of this study.pt_BR
dc.language.isopt_BRpt_BR
dc.publisherhttps://www.sbrt.org.br/sbrt2018pt_BR
dc.subjectCost Functionpt_BR
dc.subjectCorrelationpt_BR
dc.subjectBilinear Transformpt_BR
dc.subjectTensor Productpt_BR
dc.titleAlgebraic Characterization of the Cost Function for Discrete Transversal Filterspt_BR
dc.typeArtigo de Eventopt_BR
dc.description.abstract-ptbrThis article deals with the algebraic structure of the real case cost function, present in the analysis of Wiener filters. The correlation written as a decomposable tensor comes from the isomorphism of the multiplication of inner products and linear operators, and for general bases does not have the same representation in terms of the components. This difference is the object of this study.pt_BR
dc.title.enAlgebraic Characterization of the Cost Function for Discrete Transversal Filterspt_BR
Aparece en las colecciones: DETE - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2018_eve_rdecbluhm.pdf214,42 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.