Please use this identifier to cite or link to this item: http://repositorio.ufc.br/handle/riufc/56651
Type: Dissertação
Title: Machine learning algorithms to solve statistical problems
Authors: Souza, Fábio Hemerson Araújo de
Advisor: Pinho, Luis Gustavo Bastos
Co-advisor: Freitas, Silvia Maria de
Keywords: Inteligência artificial;Aprendizado de máquina;Algoritmos;PIPE;Redes neurais;Artificial inteligence;Machine learning;Algorithms;Neural Network
Issue Date: 2020
Citation: SOUZA, Fábio Hemerson Araújo de. Machine learning algorithms to solve statistical problems. 2020. 45 f. Dissertação (Mestrado em Modelagem e Métodos Quantitativos) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2020.
Abstract in Brazilian Portuguese: Antes de sua popularidade o campo da inteligência artificial começou a se espalhar pelo mundo como uma ferramenta computacional de um futuro distante. Em 1950, as Redes Neurais Artificiais (RNA) começaram a ser desenvolvidas e todos os algoritmos de inteligência computacional seguiram o mesmo caminho, fazendo com que esse futuro ficasse cada vez mais próximo. Atualmente, o aprendizado de máquina, um ramo da IA, é usado em muitos campos e processos diferentes, como marketing e vendas, inteligência de negócios, pesquisa e desenvolvimento, cadeia de suprimentos, estoques financeiros, recursos humanos, saúde, etc. O amadurecimento da área de IA trás consigo uma base probabilística que pode ser usada para resolver alguns problemas em estatística. Neste trabalho fazemos uso de técnicas e algoritmos de aprendizado de máquina para resolver dois problemas estatísticos propostos. No capítulo 1, o problema é encontrar uma aproximação para a função de distribuição acumulada para distribuição Normal. Esta expressão precisa ser matemática e computacionalmente mais simples do que outras aproximações encontradas em palestras e artigos de estatística e um possível uso dessa expressão é em sala de aula em disciplinas de introdução à estatística. No capítulo 2 abordamos um problema de distribuição de identificabilidade usando algoritmo de aprendizado de máquina e uma estrutura para computação matemática chamada textit Tensorflow e uma biblioteca de abstração para rotinas de aprendizagem profunda chamada textit Keras, ambas escritas em Python. O objetivo principal aqui é construir uma estrutura que possa ser capaz de capturar características de uma amostra fornecida pelo usuário e classificar a distribuição original dessa amostra. Os resultados foram promissores com uma precisão superior a 95 % para cada distribuição usada nos exemplos.
Abstract: The field of artificial intelligence before its popularity, begin to be spread around the world as a computational tools from a distant future. In 1950, Artificial Neural Network (ANN) begin to be developed and all compute intelligence algorithms follow the same way , making that future be more closer now a days. Currently, machine learning, an AI branch, is used in many different fields and processes such as marketing and sales, business intelligence, research and development, supply chain, financial stocks, human resources, healthcare, etc. The maturation of AI field carries itself a probabilistic bases that can be used to solve some problems in statistics. In this work we make use of machine learning techniques and algorithms to solve two proposed statistical problems. In chapter 1, the issue is to find an approximation to normal cumulative distribution function. This expression needs to be mathematically and computationally simpler than other approximations founded in statistics lectures and papers and one possible use of this expression is in introductory statistics classrooms. Chapter 2 we address an identifiability distribution problem using machine learning algorithm and a framework for mathematical computation called Tensorflow and an abstraction library for deep learning routines called Keras, both of them written in Python. The main goal here is construct a structure that can be able to capture features from a sample provided by the user and classify the parent distribution of this sample. The results were promising with a accuracy greater then 95% for each distribution used for examples.
URI: http://www.repositorio.ufc.br/handle/riufc/56651
Appears in Collections:DEMA - Dissertações defendidas na UFC

Files in This Item:
File Description SizeFormat 
2020_dis_fhasouza.pdf478,99 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.