
FEDERAL UNIVERSITY OF CEARÁ

CENTRE OF SCIENCE

STATISTICS AND APPLIED MATHEMATICS DEPARTMENT

GRADUATE PROGRAM IN MODELING AND QUANTITATIVE METHODS

MODELING AND QUANTITATIVE METHODS GRADUATE DEGREE

FÁBIO HEMERSON ARAÚJO DE SOUZA

MACHINE LEARNING ALGORITHMS TO SOLVE STATISTICAL PROBLEMS

FORTALEZA

2020

FÁBIO HEMERSON ARAÚJO DE SOUZA

MACHINE LEARNING ALGORITHMS TO SOLVE STATISTICAL PROBLEMS

Master thesis presented to Graduate Program in
Modeling and Quantitative Methods in Centre
of Science of Federal University of Ceará, as
a partial requirement for obtaining a master’s
degree in Modeling and Quantitative Methods.
Emphasis field: Modeling and Quantitative
Methods

Advisor: Prof. Dr. Luis Gustavo Bastos
Pinho
Co-advisor: Profa. Dra. Silvia Maria de Freitas

FORTALEZA

2020

Dados Internacionais de Catalogação na Publicação
Universidade Federal do Ceará

Biblioteca Universitária
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

S238m Souza, Fábio Hemerson Araújo de.
 Machine learning algorithms to solve statistical problems / Fábio Hemerson Araújo de Souza. – 2020.
 45 f. : il. color.

 Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação
em Modelagem e Métodos Quantitativos, Fortaleza, 2020.
 Orientação: Prof. Dr. Luis Gustavo Bastos Pinho.
 Coorientação: Profa. Dra. Sílvia Maria de Freitas.

 1. Artificial Intelligence. 2. Learning. 3. Algorithms. 4. PIPE. 5. Network. I. Título.
 CDD 510

FÁBIO HEMERSON ARAÚJO DE SOUZA

MACHINE LEARNING ALGORITHMS TO SOLVE STATISTICAL PROBLEMS

Master thesis presented to Graduate Program in
Modeling and Quantitative Methods in Centre
of Science of Federal University of Ceará, as
a partial requirement for obtaining a master’s
degree in Modeling and Quantitative Methods.
Emphasis field: Modeling and Quantitative
Methods

Approved on: 20/02/2020.

COMMITTEE MEMBERS

Prof. Dr. Luis Gustavo Bastos Pinho (Advisor)
Universidade Federal do Ceará (UFC)

Profa. Dra. Silvia Maria de Freitas (Co-advisor)
Universidade Federal do Ceará (UFC)

Prof. Dr. Gualberto Segundo Agamez Montalvo
Universidade Federal do Ceará (UFC)

Profa. Dra. Maria do Carmo Soares Lima
Universidade Federal de Pernambuco (UFPE)

to my beloved parents Inácio and Ecila

and

my future wife Rebeca.

ACKNOWLEDGMENTS

My parents for the immeasurable understanding about my all my choices.

Rebeca Dieb Holanda Silva, for her comprehension at all times that I was absent and

for unconditional support she always gave me in all my choices.

My advisor Prof.Dr.Luis Gustavo Bastos Pinho.

Especial professors like João Maurício Araújo Mota, Gualberto Segundo Agamez

Montalvo, Juvêncio Santos Nobre, Maria Jacqueline Batista, Silvia Maria de Freitas, Maria do

Carmo Soares Lima.

My friends Alexandre Magno Cavalcante Sucupira, Alexandre Farias Monte Mon-

teiro, Alex Newman Veloso dos Santos, Anny Suellen Gomes da Silva, Andreia El Haber Limão,

André Erasmo de Almeida, Elícius Feijó Cordeiro, Gabriel Garcez Barros Sousa, José Roberval

Cândido Júnior, Rodolfo Jordan Domingos Quintela, Thaina Soares Silva e Victor Diego de

Almeida.

“I believe observation and knowledge must pre-

cede action.” (STRANGE, Stephen Vicent).

RESUMO

Antes de sua popularidade o campo da inteligência artificial começou a se espalhar pelo mundo

como uma ferramenta computacional de um futuro distante. Em 1950, as Redes Neurais Artifici-

ais (RNA) começaram a ser desenvolvidas e todos os algoritmos de inteligência computacional

seguiram o mesmo caminho, fazendo com que esse futuro ficasse cada vez mais próximo. Atu-

almente, o aprendizado de máquina, um ramo da IA, é usado em muitos campos e processos

diferentes, como marketing e vendas, inteligência de negócios, pesquisa e desenvolvimento,

cadeia de suprimentos, estoques financeiros, recursos humanos, saúde, etc. O amadurecimento

da área de IA trás consigo uma base probabilística que pode ser usada para resolver alguns

problemas em estatística. Neste trabalho fazemos uso de técnicas e algoritmos de aprendizado

de máquina para resolver dois problemas estatísticos propostos. No capítulo 1, o problema é

encontrar uma aproximação para a função de distribuição acumulada para distribuição Normal.

Esta expressão precisa ser matemática e computacionalmente mais simples do que outras aproxi-

mações encontradas em palestras e artigos de estatística e um possível uso dessa expressão é em

sala de aula em disciplinas de introdução à estatística. No capítulo 2 abordamos um problema de

distribuição de identificabilidade usando algoritmo de aprendizado de máquina e uma estrutura

para computação matemática chamada textit Tensorflow e uma biblioteca de abstração para

rotinas de aprendizagem profunda chamada textit Keras, ambas escritas em Python. O objetivo

principal aqui é construir uma estrutura que possa ser capaz de capturar características de uma

amostra fornecida pelo usuário e classificar a distribuição original dessa amostra. Os resultados

foram promissores com uma precisão superior a 95 % para cada distribuição usada nos exemplos.

Palavras-chave: Inteligência artificial. Aprendizado do computador. Algoritmos. PIPE. Redes

neurais.

ABSTRACT

The field of artificial intelligence before its popularity, begin to be spread around the world as

a computational tools from a distant future. In 1950, Artificial Neural Network (ANN) begin

to be developed and all compute intelligence algorithms follow the same way , making that

future be more closer now a days. Currently, machine learning, an AI branch, is used in many

different fields and processes such as marketing and sales, business intelligence, research and

development, supply chain, financial stocks, human resources, healthcare, etc. The maturation of

AI field carries itself a probabilistic bases that can be used to solve some problems in statistics.

In this work we make use of machine learning techniques and algorithms to solve two proposed

statistical problems. In chapter 1, the issue is to find an approximation to normal cumulative

distribution function. This expression needs to be mathematically and computationally simpler

than other approximations founded in statistics lectures and papers and one possible use of

this expression is in introductory statistics classrooms. Chapter 2 we address an identifiability

distribution problem using machine learning algorithm and a framework for mathematical

computation called Tensorflow and an abstraction library for deep learning routines called Keras,

both of them written in Python. The main goal here is construct a structure that can be able to

capture features from a sample provided by the user and classify the parent distribution of this

sample. The results were promising with a accuracy greater then 95% for each distribution used

for examples.

Keywords: Artificial inteligence. Machine learning. Algorithms. PIPE. Neural Network.

LIST OF FIGURES

Figure 1 – True values of the normal cdf (solid line) and approximate values (dots) . . 20

Figure 2 – True median values (solid line). Approximated values (+) 23

Figure 3 – True quantile values (solid line). Approximation quantile values of a GHN

random variables set (+) . 25

Figure 4 – Tree representation of the normal distribution pdf 26

Figure 5 – A general MLP diagram . 35

LIST OF TABLES

Table 1 – Values for normal cumulative distribution function 18

Table 2 – Approximate values using PIPE approximation 19

Table 3 – Absolute error for PIPE approximation . 19

Table 4 – Mean absolute error and maximum absolute error for some approximations . 20

Table 5 – PIPE’s Setup Parameters . 29

Table 6 – Statistics for elapsed time per sample size (100 times execution) 29

Table 7 – Probability density functions in Marshall and Olkin (2001) 33

Table 8 – Confusion matrix for the classification of the generated data in the test set . . 41

LIST OF ABBREVIATIONS AND ACRONYMS

AI Artificial Intelligence

AIC Akaike Information Criterion

ANN Artificial Neural Network

BIC Bayesian Information Criterion

CDF Cumulative Distribution Function

DNA DeoxyiboNucleic Acid

FDL Fitness Dependent Learning

GMM Generalized Moment Methods

GMME Generalized Moment Methods Estimator

KL Kullback-Liebler

MAE Mean Absolute Error

MaxAE Max Absolute Error

MLE Maximum Likelihood Estimation

MLP Multilayer Perceptron

MM Moment Methods

MME Moment Methods Estimator

MRI Magnetic Ressonance Image

MSE Mean Squared Error

NN Neural Network

PDF Probability Density Function

PIPE Probabilistic Incremental Program Evolution

PMF Probability Mass Function

PPT Probabilistic Prototype Tree

SEV Small Extracellular Vesicles

TEM Transmition Electron Microscopy

SUMMARY

1 INTRODUCTION . 13

2 NORMAL CUMULATIVE DISTRIBUTION FUNCTION APPROXI-

MATION . 16

2.1 Existing approximations for the normal distribution cumulative distri-

bution function . 16

2.2 Proposed approximation . 18

2.3 An example of use for the approximation outside Statistics 21

2.4 The PIPE algorithm . 25

2.5 Chapter final remarks . 30

3 NEURAL NETWORKS FOR MODEL SELECTION PROBLEMS . . . 31

3.1 Model selection methods . 31

3.2 Results from Marshall and Olkin (2001) 32

3.3 A Brief Introduction to Deep Neural Networks and Keras Python Library 34

3.4 Our proposal . 38

3.5 Chapter final remarks . 41

4 FINAL REMARKS . 43

REFERENCES . 47

ANEXO A – PIPE and Keras Neural Network Source Code 48

13

1 INTRODUCTION

The first part of this paper works on usage of normal distribution density function

is at the core of many first semester courses on Introduction to Statistics for many majors in

Engineering and Sciences. It also appears in other subjects as solution to certain equations

that model certain phenomena. Usually, the probabilities under this model are presented in a

probability table that the students have to consult during exercises and exams. Although this

method works well, there is, in our view, a more efficient way to teach how to obtain probabilities

under the standard normal distribution without relying on personal computers.

We present an approximate expression for the cumulative distribution function of

the standard normal distribution. The purpose of our approximate expression is to be used

in classroom as an alternative to the typical normal distribution probability tables both in

introductory courses in Statistics and other subjects. The motivation for this is twofold. First, the

probability table is one extra sheet of paper that students have to print and carry with them for

months. Usually they get lost and students get caught in an exam or class without a table. Second,

the normal distribution is widely used in so many different fields and by so many different

professionals that it is worthwhile to have a small formula that is easy to use and to remember. It

can be used with a simple hand held calculator for quick assessments.

It is not rare to find graduate students from several fields relying on the normal

distribution table for their research when a computer is available. This suggests that the normal

distribution table may be seen by many students and professionals as a first option when using

the normal probability model even though they are not in a classroom environment. We believe

that having an approximate expression will reinforce to the students that the normal distribution

cumulative probabilities come from calculus, they may not be easily obtained by hand but can

easily be calculated by a computer.

Our approximation was obtained by using an algorithm called Probabilistic Incre-

mental Program Evolution (PIPE) proposed by Salustowicz and Schmidhuber (1997). This

algorithm belongs to the class of Estimation of Distribution algorithms. Given a task and an

optimal criterion, PIPE searches an space of possible solutions to the task by following a set of

probability rules. These probability rules are updated over iterations of the algorithm such that

better solutions will have a larger likelihood of being visited.

The second part focus on one major concern in practical uses of statistical models

capacity of choosing a plausible and adequate distribution to the data at hand. Ideally, the model

14

is created from the underlying knowledge of the problem. After designing the model and fitting

it to the data, some diagnostic methods are used to evaluate how well the model fits the data.

One of the simplest methods for univariate problems is using the likelihood function

of the model, defined as the product of the probability density function evaluated in all points of

the samples seen as a function of the parameters, that is

`(θθθ ;x1,x2, . . . ,xn) =
n

∏
i=1

f (xi;θθθ), (1)

where θθθ is a parameter vector and x1,x2, . . . ,xn are observed sample points. This measures how

likely are samples from a random variable with probability density function f (x;θθθ) to be similar

to the observed sample.

Other quantities, such as the AIC (Akaike Information Criterion) and BIC (Bayesian

Information Criterion), are penalized versions of the likelihood, where the penalty is due to the

number of parameters. A lower value of AIC and BIC is desirable. Under mild conditions the

BIC provides consistent choices given that the true model for the data is among the models

compared. Another popular measure is the Kolmogorov-Smirnoff distance, defined as the largest

absolute deviation between the theoretical and the empirical cumulative distribution function.

Marshall et al. (2001) investigate weather or not the true model that generates data

is preferred by the likelihood and Kolmogorov-Smirnoff distance. A Monte Carlo simulation

is used to access the probability of correct choice. This is done for different sample sizes and

parameter values. The general conclusion of Marshall et al. (2001) is that the data will, in

fact, recognize its parent distribution, but that depends on the sample size and values of the

parameters.

For some sample sizes and parameters configurations the chance of the correct model

being the one pointed out by the selection methods is very low. In many situations involving

the gamma and Weibull distributions there is about 50% chance that the methods will choose a

wrong distribution. That raises important questions on the reliability of these methods specially

for small to moderate sample sizes. As the authors point out, the methods work nicely for large

sample sizes but these are not the absolute prevalent situation.

Here we investigate the use of neural networks to identify the parent distribution of

the data from sample moments. We use an increasingly popular framework, at the time of writing,

for machine learning named Keras. We show empirical evidence that suggests there are non

linear patterns in the sample moments that may be exploited to identify the parent distribution

with a much higher accuracy then compared to the likelihood based methods from Marshall et al.

15

(2001). The results have two main implications. First, it suggests the use of deep neural networks

to model selection tasks in the univariate context. There is, however, the need for further studies

to understand or formulate theoretical guarantees before using deep neural networks for this end

in practical and possibly sensible applications. As a secondary implication, the results suggest

that there still is room for new selection methods that are based solely on the sample moments.

One possible direction to such end is the use of maximum entropy characterizations (JAYNES,

1957), which usually involve some constraints on the moments of the distributions.

16

2 NORMAL CUMULATIVE DISTRIBUTION FUNCTION APPROXIMATION

In this chapter, we present an approximate expression for the cumulative distribution

function of the standard normal distribution that is both easy to remember and easy to use. This

approximation was obtained by an estimation of distribution algorithm.

2.1 Existing approximations for the normal distribution cumulative distribution func-

tion

Let Z be a random variable with standard normal distribution and cumulative distri-

bution function given by

P(Z ≤ z) = Φ(z) =
∫ z

−∞

1√
2π

e−
z2
2 dx. (2)

Pólya’s approximation (PÓLYA, 1945) is one of the most cited approximations for

the normal cumulative distribution function with the purpose of providing convenient calculations.

It is given by

Φ̂(z) =
1
2

1+
[

1− exp
(
−2z2

π

)] 1
2

 (3)

The result from Pólya’s work involves elegant series expansions and is related to

other works such as those developed by Neyman and Pearson on hypothesis testing. It is actually

an upper bound for Φ(z). The maximum absolute error for the approximation over the range

(-5,5) is 0.003.

Cadwell (1951) improves this inequality bound by a geometric manipulation of an

integral used by Pólya. His approximation is given by

1
2

1+
[

1− exp
(
−2z2

π
− 2(π−3)z4

3π2

)] 1
2

 . (4)

The maximum absolute error for Cadwell’s approximation is 0.006 for z ∈ (−5,5).

Another approximation is seen in Hoyt (1968), which is a very short paper presenting

a connection between sums of independent and identically distributed uniform random variables

and the normal distribution by the central limit theorem. It is intended to be an exercise in an

undergraduate probability class and not a viable, practical and accurate approximation such as

17

the other ones presented here, but it is a very interesting one nonetheless. Also, it relies on

a different argument compared to the others. Hoyt (1968) observes that if X1,X2, · · · ,Xn are

independent and identically distributed uniformly in the interval (−1,1), then, by the central

limit theorem,

Tn = (Sn−0.5n)

√
12
n
, (5)

Sn = X1 +X2 + · · ·+Xn, converges in distribution to a N(0,1) random variable. For

n = 3, Tn ranges from −3 and 3, which is the most used interval for the normal distribution.

Also, the probability density function of T3 has inflection points at −1 and 1, as does the normal

distribution probability density function. For these similarities, the probability density function

of T3 can be used as to obtain an approximation for Φ(z). The exact probability density function

of T3 is

g(t) =

(3− t)2

8
if |t|< 1,

(3−|t|)2

16
, if 1 < |t|< 3,

0 elsewhere.

(6)

From it, simple integration provides an approximation for Φ(z).

Lin (1989) gives an approximation in the form Φ̂(z) = 1− 1
2 exp{az+bz2} by fitting

az+bz2 to logΦ(z) using least squares. He finds a=−0.416 and b=−0.717. This is remarkably

simple as well and the relative error for the most used values is less than 1%.

The same author proposes another approximation using a logistic function. In Lin

(1990) it is presented

Φ̂(z) =
[

1+ exp
(

4.2πz
9− z

)]−1

. (7)

This formula has errors as small as the previous one except at some tail values. For

Φ̂(0.99975) and Φ̂(0.99999) the author reports relative errors of 3% and 8%, respectively.

Bowling et al. (2009) propose yet another approximation based on logistic functions.

Their approximation is given by

Φ̂(z) = 1−
[
1+ exp

(
−0.07056z3 +1.5976z

)]−1
. (8)

Dombi and Jonas (2018), based on continuous-valued logic operators, obtain

Φ̂(z) =

[
1+ exp

(
−2

√
2
π

z

)]−1

, (9)

18

which has a maximum absolute error of 0.0177. This result appears also in Tocher

(1963).

Next, we describe our approximation.

2.2 Proposed approximation

We claim that for classroom and non-critical situations where a computer is not

available the following approximation can be used instead of the normal probability table:

Φ̃(z) =

1

0.19z +1
, 0 < z≤ 1

0.63exp(−z1.6), z > 1
(10)

For the negative arguments of Φ we use the symmetry of the function as it is done

with the probability table. Table 1 shows a typical normal distribution table presented in most

introductory texts in Statistics. Table 2 shows the same table filled with our approximation.

Lastly, Table 3 shows the absolute errors of our approximation calculated as |Φ̃(z)−Φ(z)|.

Table 1 – Values for normal cumulative distribution function
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

Source: Author

19

Table 2 – Approximate values using PIPE approximation
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5042 0.5083 0.5125 0.5166 0.5207 0.5249 0.5290 0.5332 0.5373
0.1 0.5414 0.5455 0.5497 0.5538 0.5579 0.5620 0.5660 0.5701 0.5742 0.5782
0.2 0.5823 0.5863 0.5903 0.5943 0.5983 0.6023 0.6063 0.6103 0.6142 0.6181
0.3 0.6220 0.6259 0.6298 0.6337 0.6375 0.6414 0.6452 0.6490 0.6527 0.6565
0.4 0.6602 0.6639 0.6676 0.6713 0.6750 0.6786 0.6822 0.6858 0.6894 0.6929
0.5 0.6964 0.6999 0.7034 0.7069 0.7103 0.7137 0.7171 0.7204 0.7238 0.7271
0.6 0.7304 0.7336 0.7368 0.7401 0.7432 0.7464 0.7495 0.7526 0.7557 0.7588
0.7 0.7618 0.7648 0.7678 0.7707 0.7736 0.7765 0.7794 0.7822 0.7851 0.7878
0.8 0.7906 0.7933 0.7961 0.7987 0.8014 0.8040 0.8066 0.8092 0.8118 0.8143
0.9 0.8168 0.8192 0.8217 0.8241 0.8265 0.8289 0.8312 0.8335 0.8358 0.8381
1.0 0.8403 0.8426 0.8447 0.8469 0.8490 0.8512 0.8533 0.8553 0.8574 0.8594
1.1 0.8614 0.8634 0.8653 0.8672 0.8691 0.8710 0.8729 0.8747 0.8765 0.8783
1.2 0.8800 0.8818 0.8835 0.8852 0.8869 0.8885 0.8902 0.8918 0.8934 0.8950
1.3 0.8965 0.8980 0.8995 0.9010 0.9025 0.9040 0.9054 0.9068 0.9082 0.9096
1.4 0.9109 0.9123 0.9136 0.9149 0.9162 0.9174 0.9187 0.9199 0.9211 0.9223
1.5 0.9235 0.9247 0.9258 0.9270 0.9281 0.9292 0.9303 0.9313 0.9324 0.9334
1.6 0.9345 0.9355 0.9365 0.9374 0.9384 0.9394 0.9403 0.9412 0.9421 0.9430
1.7 0.9439 0.9448 0.9457 0.9465 0.9473 0.9482 0.9490 0.9498 0.9506 0.9513
1.8 0.9521 0.9528 0.9536 0.9543 0.9550 0.9557 0.9564 0.9571 0.9578 0.9585
1.9 0.9591 0.9598 0.9604 0.9610 0.9616 0.9623 0.9629 0.9634 0.9640 0.9646
2.0 0.9652 0.9657 0.9663 0.9668 0.9673 0.9678 0.9684 0.9689 0.9694 0.9698
2.1 0.9703 0.9708 0.9713 0.9717 0.9722 0.9726 0.9731 0.9735 0.9739 0.9743
2.2 0.9748 0.9752 0.9756 0.9760 0.9763 0.9767 0.9771 0.9775 0.9778 0.9782
2.3 0.9785 0.9789 0.9792 0.9796 0.9799 0.9802 0.9805 0.9808 0.9812 0.9815
2.4 0.9818 0.9821 0.9823 0.9826 0.9829 0.9832 0.9835 0.9837 0.9840 0.9843
2.5 0.9845 0.9848 0.9850 0.9852 0.9855 0.9857 0.9860 0.9862 0.9864 0.9866
2.6 0.9868 0.9871 0.9873 0.9875 0.9877 0.9879 0.9881 0.9883 0.9885 0.9887
2.7 0.9888 0.9890 0.9892 0.9894 0.9895 0.9897 0.9899 0.9901 0.9902 0.9904
2.8 0.9905 0.9907 0.9908 0.9910 0.9911 0.9913 0.9914 0.9916 0.9917 0.9918
2.9 0.9920 0.9921 0.9922 0.9924 0.9925 0.9926 0.9927 0.9928 0.9930 0.9931
3.0 0.9932 0.9933 0.9934 0.9935 0.9936 0.9937 0.9938 0.9939 0.9940 0.9941

Source: Author

Table 3 – Absolute error for PIPE approximation
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.0000 0.0002 0.0003 0.0005 0.0006 0.0008 0.0010 0.0011 0.0013 0.0014
0.1 0.0016 0.0017 0.0019 0.0020 0.0022 0.0023 0.0025 0.0026 0.0028 0.0029
0.2 0.0030 0.0031 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 0.0039 0.0040
0.3 0.0041 0.0042 0.0043 0.0044 0.0045 0.0045 0.0046 0.0047 0.0047 0.0048
0.4 0.0048 0.0048 0.0049 0.0049 0.0049 0.0050 0.0050 0.0050 0.0050 0.0050
0.5 0.0050 0.0050 0.0049 0.0049 0.0049 0.0049 0.0048 0.0048 0.0047 0.0047
0.6 0.0046 0.0045 0.0045 0.0044 0.0043 0.0042 0.0042 0.0041 0.0040 0.0039
0.7 0.0038 0.0036 0.0035 0.0034 0.0033 0.0032 0.0030 0.0029 0.0028 0.0026
0.8 0.0025 0.0023 0.0022 0.0020 0.0018 0.0017 0.0015 0.0014 0.0012 0.0010
0.9 0.0008 0.0007 0.0005 0.0003 0.0001 0.0001 0.0003 0.0004 0.0006 0.0008
1.0 0.0010 0.0012 0.0014 0.0016 0.0018 0.0020 0.0022 0.0024 0.0026 0.0028
1.1 0.0030 0.0031 0.0033 0.0035 0.0037 0.0039 0.0041 0.0043 0.0045 0.0047
1.2 0.0049 0.0051 0.0053 0.0054 0.0056 0.0058 0.0060 0.0062 0.0063 0.0065
1.3 0.0067 0.0069 0.0070 0.0072 0.0074 0.0075 0.0077 0.0079 0.0080 0.0082
1.4 0.0083 0.0085 0.0086 0.0088 0.0089 0.0090 0.0092 0.0093 0.0094 0.0096
1.5 0.0097 0.0098 0.0099 0.0100 0.0101 0.0103 0.0104 0.0105 0.0106 0.0107
1.6 0.0107 0.0108 0.0109 0.0110 0.0111 0.0112 0.0112 0.0113 0.0114 0.0115
1.7 0.0115 0.0116 0.0116 0.0117 0.0117 0.0118 0.0118 0.0119 0.0119 0.0119
1.8 0.0120 0.0120 0.0120 0.0121 0.0121 0.0121 0.0121 0.0121 0.0121 0.0122
1.9 0.0122 0.0122 0.0122 0.0122 0.0122 0.0122 0.0121 0.0121 0.0121 0.0121
2.0 0.0121 0.0121 0.0121 0.0120 0.0120 0.0120 0.0119 0.0119 0.0119 0.0118
2.1 0.0118 0.0118 0.0117 0.0117 0.0116 0.0116 0.0115 0.0115 0.0114 0.0114
2.2 0.0113 0.0113 0.0112 0.0112 0.0111 0.0111 0.0110 0.0109 0.0109 0.0108
2.3 0.0107 0.0107 0.0106 0.0105 0.0105 0.0104 0.0103 0.0103 0.0102 0.0101
2.4 0.0100 0.0100 0.0099 0.0098 0.0097 0.0097 0.0096 0.0095 0.0094 0.0094
2.5 0.0093 0.0092 0.0091 0.0090 0.0090 0.0089 0.0088 0.0087 0.0087 0.0086
2.6 0.0085 0.0084 0.0083 0.0083 0.0082 0.0081 0.0080 0.0079 0.0079 0.0078
2.7 0.0077 0.0076 0.0075 0.0075 0.0074 0.0073 0.0072 0.0071 0.0071 0.0070
2.8 0.0069 0.0068 0.0068 0.0067 0.0066 0.0065 0.0065 0.0064 0.0063 0.0062
2.9 0.0062 0.0061 0.0060 0.0060 0.0059 0.0058 0.0057 0.0057 0.0056 0.0055
3.0 0.0055 0.0054 0.0053 0.0053 0.0052 0.0051 0.0051 0.0050 0.0049 0.0049

Source: Author

20

These errors seem acceptable for classroom usage when a computer is not available.

Figure 1 shows some of the approximations compared to our own and the true value

of Φ(z). In Table 4 we compare the errors of these approximations to our own. The mean

absolute error (MAE) and maximum absolute error (MaxAE) were evaluated for set of points

{−5.00,−4.99,−4.98, . . . ,4.98,4.99,5.00}.

Figure 1 – True values of the normal cdf (solid line) and approximate values (dots)

−3 −2 −1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Our approximation

x

Φ
(z

)

−3 −2 −1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Pólya’s approximation

x

Φ
(z

)

−3 −2 −1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lin’s approximation

x

Φ
(z

)

Source: Author

Table 4 – Mean absolute error and maximum absolute error for some approximations
Approximation Expression MAE MaxAE

Our approximation

{
1

0.19z+1 , if 0≤ z≤ 1
0.63exp(−z1.6), if 1 < z

0.00086 0.00498

Pólya (1945) 1
2

{
1+
[
1− exp

(
−2z2

π

)] 1
2
}

0.00101 0.00315

Cadwell (1951) 1
2

{
1+
[
1− exp

(
−2z2

π
− 2(π−3)z4

3π2

)] 1
2
}

0.00204 0.00647

Lin (1990) 1−
[
1+ exp

(4.2πz
9−z

)]−1
0.00109 0.00669

Bowling (2009) 1−
[
1+ exp

(
−0.07056z3 +1.5976z

)]−1 0.10459 0.69678

Dombi and Jonas (2018)
[

1+ exp
(
−2
√

2
π

z
)]−1

0.00703 0.01767

Source: Author

21

Our approximation achieves the best mean absolute error and the second best maxi-

mum absolute error over the entire range, requires less inputs from the user of a pocket calculator

and is not difficult to remember. For z→−∞ and z→ ∞ it approaches 0 and 1, as it is desirable

for an approximation of Φ(z). The inconvenience is that our approximation is defined piece-wise,

but even so, the derivatives of both expressions at z = 1 are very close in value. They are

respectively 0.222 and 0.229. That seems sufficiently smooth for classroom use. The gap at

z = 1 is approximately 0.004.

This approximation was obtained by using an probability estimation algorithm to

automatically search for a good approximation in a very large set of possible candidates as

explained in the next section.

2.3 An example of use for the approximation outside Statistics

The approximation we propose can be used in other subjects other than introductory

courses in Statistics. Here is an example of how it can be used in an Engineering classroom. It is

not expected that students in an Physics or Engineering classroom will carry statistical tables at

all times. Cooray and Ananda (2012) discuss the mechanics of fatigue induced cracks in some

materials. A generalization of the half-normal distribution is proposed by them as follows.

Brittle materials may exhibit delayed fractures due to environmental stress such

as corrosion, moisture, heat and other factors. Glass and ceramics are two of such materials

(WACHMAN, 1996). Let {τ} be the stress tensor given by

τττ =

τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 (11)

where τi j represents the stress acting on a pĺane normal to direction i and towards

direction j. A mode I fracture happens from a flaw in a plane that is normal to the tensile strength.

The length of the crack evolves over time according to the equation

dL
dt

= AKB
I , (12)

where A and B are constants and KI is the mode I fracture intensity factor, which

is related to the asymptotic behavior of τyy, the component of the stress that is parallel to the

y axis. In an homogeneous material under an homogeneous stress τyy = τ it can be shown

22

that KI = τDL1/2, where D depends on the crack geometry. This yields L = σtα , where

α = 2/(2−B), as solution to Equation 12.

The fatigue failure happens as a dominant crack grows over a critical length lc. The

length of those sub-critical cracks are usually modeled by a half-normal distribution whose cdf

is given by

P(L < l) = 2Φ(l)−1, l > 0. (13)

Using L = τσtα yields P(T < t) = 2Φ

[(t
σ

)α
]
−1 for the distribution of the random

time T until failure of the material. This distribution was called Generalized Half-Normal

distribution by Cooray and Ananda (2012). From this point on the discussion would be disrupted

if there was a need for computer or normal probabilities tables. With the formula proposed here,

we can easily obtain several quantities regarding this application without any special preparation.

Some of these quantities are, for instance, threshold values for the time until failure of the

material.

For instance, an approximation for P(T < t) using (10) is given by

P(T < t) =

2

1+0.19(
t
σ)

α −1, 0 < t ≤ σ

2 ·0.63exp
[
−(t

σ)
1.6α

]
−1, t > σ .

(14)

The quantile function can be obtained by inverting the previous expression. For a

quantile tq such that P(T < tq) = q we have

tq =

σ

 log
(

1−q
1+q

)
log(0.19)

1/α

, 0≤ q≤ 81
119

σ

log

 log(0.63)

log
(

1+q
2

)

1/1.6α

,
81

119
< q≤ 1.

(15)

To illustrate the behavior of our approximation we provide, in Figure 2, the compari-

son of the approximate and real values of the median for varying values of α and σ = 1.The true

value of the median is given by

t0.5 = σ

[
Φ
−1
(

3
4

)]1/α

23

. Using (10) yields

t0.5 = σ

[
− log(3)

log(0.19)

]1/α

Figure 2 – True median values (solid line). Approximated values (+)

0 2 4 6 8 10

0
.0

0
.5

1
.0

1
.5

2
.0

α

M
e
d
ia

n

+

+

+

+

+

+

+
+
+
+
+
++
++
++
+++

+++
++++

++++++
++++++++

+++++++++++++
+++++++++++++++++++++++

++++++++++++++++++++++++

Source: Author

To test our approximation even further, consider a system of n components each of

which is subject to the same stress of the previous situation. If these components are arranged in

a parallel fashion the system works until all of them fail. In this case, the time until failure is the

maximum of the set of times until failure of each component. It has cdf given by

P(Tmax < t) =
(

2Φ

[(t
σ

)α
]
−1
)n

. (16)

If the components are arranged in a serial configuration, meaning that the system

will fail if any of the components fail, the time until failure will have cdf given by

P(Tmin < t) = 1−
(

2−2Φ

[(t
σ

)α
])n

. (17)

24

The quantile function for the maximum and the minimum are respectively given by

xq =

σ

log

(
1−q1/n

1+q1/n

)
log(0.19)

1/α

, 0≤ q≤
[

81
119

]n

σ

log

 log(0.63)

log

(
1+q1/n

2

)

1/1.6α

,

[
81

119

]n

< q≤ 1,

(18)

and

xq =

σ

log

(
(1−q)1/n

2− (1−q)1/n

)
log(0.19)

1/α

, 0≤ q≤ 1−
[

38
119

]n

σ

log

 log(0.63)

log

(
2− (1−q)1/n

2

)

1/1.6α

, 1−
[

38
119

]n

< q≤ 1.

(19)

Figure 3 illustrates the error in our approximation for the 5% and 95% quantiles and

the median of both scenarios for varying values of α , σ = 1, n = 5 and n = 100.

25

Figure 3 – True quantile values (solid line). Approximation quantile values of a GHN random
variables set (+)

1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

Parallel (n=5)

alpha

Q
u
a

n
ti
le

s

+++

++
+++++++++++++++++++++++++

+++

1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

Parallel (n=100)

alpha

Q
u
a

n
ti
le

s

+++

+++

+++

1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Serial (n=5)

α

Q
u
a
n
ti
le

s

++++++
++++++

++++++
++++++

+++++++
+++++++

++++++++
++++++++

+++++++++
++++++++++

+++++++++++
++++++++++++

+++++

++++++++++++++++++++
++++++++++++++

+++++++++++++
++++++++++++

++++++++++++
+++++++++++++

+++++++++++++
++++

+++++
++++++

+++++++
+++++++++

+++++++++++
+++++++++++++

+++++++++++++++++
+++++++++++++++++++++++

++++++++++

1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Serial (n=100)

α

Q
u
a
n
ti
le

s

+++++++++++++++++++++++
++++++++++++++++

++++++++++++++
++++++++++++++

+++++++++++++
++++++++++++++

+++++++

++
++++++++++++++++++++++++++

++++++++++++++++++++++++++++++
++++++++++

++++++++++
+++++++++

++++++++++
++++++++++

++++++++++
+++++++++++

++++++++++++
++++++++

Source: Author

The approximation was good enough to be used for solving classroom problems not

only regarding direct applications of the normal distribution but also in at least one other field

where the normal cdf may present itself as part of the expressions needed. Besides this use for

teaching purposes it can also be used in situation such as quantile regression involving some

extensions of the normal distribution as a fast first analysis of the problem.

2.4 The PIPE algorithm

Our approximation was obtained by using an algorithm known as the Probabilistic

Incremental Program Evolution (PIPE) proposed by Salustowicz and Schmidhuber (1997). The

PIPE algorithm is capable of producing programs according to a set of probability rules. These

rules are improved over iterations so that the generated programs are more likely to solve a given

problem. In this section we follow closely the explanation in the original paper.

26

A program is a set of instructions given in a certain order. Each of these instructions

may depend on a (possibly empty) set of terminal symbols, which usually denote constants

or user inputs. Let F = { f1, f2, . . . , fk} be a set of k functions and T = {t1, t2, . . . , tl} be a set

of l terminals. For instance, to write a program that calculates the value of the probability

density function (pdf) for the normal or exponential distributions at a point x and a given set of

parameters, it is sufficient to take F = {−,×,÷,exp,√} and T = {x,π,2,1,−1,R,R+}, where

÷ the protected division (does not allow division by zero), x represents an user input, R represents

a real constant and R+ represents a positive real constant. The normal distribution pdf can be

described in the below example

(1÷ (
√

2×π×R+)× exp((−1÷ (2×R+×R+))× (x−R)× (x−R)).

Each program can be represented by an n-ary tree, where n is the maximum possible

of arguments for a function in F . For the normal distribution example we may use the tree in

Figure 4. The tree representing a program is not unique unless we specify a set of rules for

parsing a program to a tree, however this is negligible for our purpose.

Figure 4 – Tree representation of the normal distribution pdf

×

÷

1 ×

√

×

2 π

R+

exp

×

÷

1 ×

2 ×

R+ R+

×

−

x R

−

x R

Source: Author

Programs can be created randomly by traversing a structure called Probabilistic

Prototype Tree (PPT). The PPT is a n-ary tree with n, again, representing the maximum arity

27

of an instruction in F . The node at depth d ≥ 0 and horizontal position w ≥ 0 (width) is

represented by Nd,w. Each node contains a probability vector Pd,w whose entries are Pd,w(I) for

each I ∈ F ∪T such that

∑
I∈F∪T

Pd,w(I) = 1, ∀Nd,w. (20)

That is, each node has the probability distribution of the possible instructions in the

programs at the respective node of their tree representation. The PPT is traversed in a depth first

fashion from left to right, starting at N0,0. For each accessed node, an instruction I is selected

with probability Pd,w(I) and denoted Id,w. If Id,w ∈ F , then a subtree is created for each argument

of Id,w. If Id,w ∈ T then it is replaced by an instance Vd,w(Id,w) of that terminal. This instance

equals Id,w if Pd,w(Id,w) is greater than a certain threshold TI and equals a randomly generated

number Rd,w otherwise. For each terminal instruction I ∈ T there corresponds a threshold TI and

these are not changed throughout the iterations. The authors in Salustowicz and Schmidhuber

(1997) also consider the growing and pruning of the PPT to reduce the memory requirements of

the algorithm. Initially there is only the node N0,0. If Id,w ∈ F is chosen and the subtree for its

arguments are missing in the PPT, then additional nodes are created (growing). Conversely, if

the probability of accessing a certain node in the PPT is too small, the node is deleted from the

PPT (pruning).

PIPE has two learning mechanics: elitist learning and generation-based learning.

These two mechanics alternate until a stopping criterion is met. Generation-based learning

comprises five distinct phases.

1. Program Population Creation. A population of programs is created according to the

rules mentioned earlier. These programs are enumerated as PROG j, 0 < j ≤ PS, with PS

denoting the population size. Probabilities in each node are initialized in a random way

but maintaining their sum equal to 1.

2. Population evaluation. Each PROG j in the population is evaluated regarding a certain

fitness function. This is a numeric value assigned by a function FIT(PROG j). The

programs are ranked in ascending order of those values. The best program in the current

population is denoted PROGb while the best program found so far is denoted PROGel .

3. Learning from the population. The probabilities in each node of the PPT are modified

as to increase the likelihood of PROGb being generated. The following steps can be stored

as the content of an adaptPPTtowards(PROGb) routine at the time of the implementation

28

by the reader. This routine can also be found in our implementation. First P(PROGb)

is obtained as ∏Pd,w(Id,w) for each instruction Id,w used in the production of PROGb. A

target probability is calculated as

PTARGET = P(PROGb)+ lr[1−P(PROGb)]×
ε +FIT (PROGel)

ε +FIT (PROGb)
(21)

in which the constant lr denotes the learning rate of the algorithm, and ε is a user-defined

positive real constant. The fraction in the right hand side of the equation implements

the fitness-dependent-learning (fdl). If ε is chosen such that ε � FIT (PROGel) then

generations with lower quality (higher fitness values) programs do not influenciate much

the learning process, allowing for the use of smaller populations. Once PTARGET is

obtained, all the probabilities Pd,w(Id,w) for the instructions used in PROGb are increased

iteratively:

1 REPEAT UNTIL P(PROGb)>PTARGET :

2 FOR EACH INSTRUCTION Id,w in PROGb:

3 Pd,w(Id,w) := Pd,w(Id,w)+ clr · lr · (1−Pd,w(Id,w)),

where clr denotes a constant that influences the number of iterations and the precision.

The choice of this constant is subjective. Lower values will imply more iterations and

more precision while higher values will do the opposite. Then, each terminal used in the

construction of PROBb is stored in the respective node of the PPT, that is, Id,w := Vd,w(Id,w)

for each terminal instruction Id,w used in PROGb.

4. PPT Mutation. In this step, the nodes acessed during the production of PROGb are

mutated with a probability PMP given by

PMP =
PM

(l + k)
√
|PROGb|

, (22)

where PM is a user defined parameter controlling the overall probability of mutation. The

previous formula is empirically justified in Salustowicz and Schmidhuber (1997). If a node

is to be mutated, the probability Pd,w(Id,w) is changed to Pd,w(Id,w)+mr · (1−Pd,w(Id,w)),

in which mr represents a mutation rate. Notice that this change is small if Pd,w(Id,w) is

already large. After the mutation step every modified node is normalized to keep the sum

of probabilities equal to 1.

5. PPT pruning. If Pd,w(Id,w) becomes too small for a certain node Nd,w and instruction

Id,w ∈ F then the sub-trees corresponding to the possible arguments of Id,w are deleted

from the PPT.

29

After the generation-based learning, elitist learning takes place by repeating the pre-

vious procedure using PROGel instead of PROGb. However, during the elitist learning mutation

is not performed. The PPT is then pruned accordingly.

The python’s PIPE implementation for this task is composed of three files. The

file pipeffr.py contains the algorithm and is the core engine algorithm. Here, ffr stands for "for

functional regression"as it can be readily used to approximate other functions with very little

effort. The file myFunctions.py contains implementations of the mathematical functions we

wish to use that are not available in popular python modules. In the investigations, the set of

parameters for the PIPE algorithm are shown in Table 5. We provided a set of 1000 pairs (Φ(z),z)

to the algorithm, with z in the set of equally spaced points in a [0,5] interval as input. An analysis

of the execution time of our implementation is available in Table 6.

Table 5 – PIPE’s Setup Parameters
Parameter Value
Population size (PS) 10000
Learning rate (lr: 0.01
ε 0.01
Generations 500
clr 0.5
PM 3
Mutation rate (mr) 0.8
Height of the PPT 4
Source: Author

Table 6 – Statistics for elapsed time per sample size (100 times execution)
Sample Size Mean Time (sec) Std Deviation Time (sec)

10 138,71 11,02
20 166,66 28,76
30 225,22 49,04
40 267,43 65,52
50 317,72 73.96

100 559,68 109,87
150 850,18 178,08
250 1130.03 263.95
500 2312.08 288.42

1000 4257.26 958.78
Source: Author

The code and instructions on how to use it for other problems are available under

30

request.

2.5 Chapter final remarks

In this paper we presented an approximate expression for the normal cumulative

distribution function that is both easy to use and to remember. It achieves a very low absolute

error that is better, on average, than the ones reported for other existing approximations. This is

intended for classroom support and quick use when out in the field or for any non-critical use.

We provided an example of situation outside of the introductory courses in Statistics where this

approximation may be used to allow easier calculations of some properties of a system. Many

others may arise from talking about income distribution (by means of the log-normal distribution)

and fluid dynamics as in gaussian diffusion models.

In our experience, we also feel that the normal table ends up being understood as the

only way to obtain normal probabilities even by some skilled professionals from other areas. We

also suggest de-emphasizing the use of the normal distribution as a general tool for solving every

problem, which is the prevalent perception of the role of the normal distribution by the students

in many fields. These approximations were presented to our students and we found a very good

acceptance.

We intend to provide, in future investigations, other approximations for the other

distributions used in introductory courses in Statistics. So far, we did not have much success

searching for an approximate expression for the Student’s t distributions as our approximations

were not as good as the existing ones.

31

3 NEURAL NETWORKS FOR MODEL SELECTION PROBLEMS

In this chapter we revisit a problem presented in Marshall et al. (2001). We attempt

to find evidence of the existence of techniques that may provide better model selection than the

standard techniques in main literatures.

3.1 Model selection methods

In Elderton and Johnson (1969) there is a discussion and general account of the

history of the use of frequency curves to model data. Among the models in chapter 4 of Elderton

and Johnsons (1969) there are the probability distributions from the so called Pearson system,

developed by Karl Pearson. The Pearson system is a class of distributions obtained by noticing

common features in data sets such as the relative position of the mean and median. Most of the

distributions of the Pearson system were presented in Pearson (1985) and Pearson (1901). Many

modern distributions were present in this system. That is not by chance. The distributions in the

Pearson system were designed for specific scenarios that could be observed from measures of

skewness and kurtosis in empirical plots. The system is majorly indexed by the third and fourth

moments of the distributions. Among the distributions in the Pearson system are the normal

distribution (Pearson type V), gamma distribution (Pearson type III), inverse-gamma distribution

(Pearson type V), beta-prime distribution (Pearson type VI) and even Student’s t (Pearson type

IV) much before William Sealy Gosset’s paper published under the pseudonym of Student which

gave the distribution its name.

Nowadays, the choice of a particular distribution to model data is largely ad-hoc

or the normal distribution is invoked through some version of the central limit theorem (often

through distorted or misinterpreted assumptions). Models of higher complexity, in number

of parameters, can be quite flexible in modeling a diverse spectrum of data but may lack a

theoretical connection to the underlying mechanism that generates the data. Even so, it is

undeniable that ad hoc choices of models will greatly speed up the time to deploy a model to

production. The collection of papers on newly created distributions, especially by means of

additional parameters using composition of existing cumulative distribution functions, grows

larger and the growth seems to be accelerating. The collective of these distributions represents an

alternative to non-parametric models. However, it might be of considerable difficulty to choose

the appropriate distribution from such a large pool of often similar choices.

32

Since this shift from careful design of probability distributions specific to certain

situations to a faster framework of statistical modeling, model selection methods have improved

in demand.

There are three popular techniques for model selection: choosing the distribution with

higher likelihood among the candidates, choosing the distribution with the lower Kolmogorov-

Smirnoff distance or the one with the lowest AIC or BIC (or similar measures) scores.

For using the likelihood, one can rely on the generalized likelihood ratio test as well

for extra certainty. The Kolmogorov-Smirnoff distance is the statistic used for the test of the

same name. It has been suggested the use of the Kolmogorov-Smirnoff statistic as a criteria for

model selection (MARSHALL et al., 2001).

To penalize overparametrized models, the AIC assigns to the fit of the model to

the data the value −2̂̀+ 2k, where ̂̀ represents the logarithm of the maximum value of the

likelihood of the model and k represents the number of parameters of the model. The BIC has a

penalty factor of log(n)k

Overfitting, in a broad sense, is not restricted to having a high number of parameters.

One example of a one parameter function that overfits data to an arbitrary degree can be seen

in Piantadosi (2018). It makes use of power of 2 arithmetic and theory on iterating functions

to choose the correct value of a parameter. In the examples of Piantadosi (2018) the choice of

parameter alters the scatterplot of the function’s values from the drawing of an elephant to a

signature.

3.2 Results from Marshall and Olkin (2001)

The main concern of Marshall and Olkin (2001) is whether or not data will recognize

its parent distribution, as state previously. They initially point out the issue of models having no

physical considerations regarding the nature of the data, as opposed to the Pearson system, for

instance, as seen in Section 2.

Regarding mode selection techniques, they used only the maximum likelihood values

of the models and the Kolmogorov-Smirnoff distance in their analysis. Based on these two

criteria they attempt to answer two specific questions:

1. How successful are these methods in identifying the actual parent parametric distribution

when given one or more alternative distributions?

2. How large must be the sample size to make the correct selection with a given probability?

33

They observe that some parametric distribution families are “richer” than others, in

the following sense. A dataset generated by a Weibull distribution is likely to be well fitted by a

gamma distribution. On the other hand, data from a gamma distribution is not likely to be better

fitted by a Weibull distribution. We will denote this relationship by saying the gamma model is

more flexible than the Weibull family.

One possible criticism to such caution on model selection is that if a model is more

flexible than other it might be enough to use the most flexible one in practical applications.

This is not true at all, especially if tail behavior has a critical importance. An example of such

situation appears in insurance modelling, where it is reasonable to sacrifice the goodness of fit of

the majority of the data in order to accurately predict tail behavior.

More details on this matter can be seen in, for instance, Bain and Engelhardt (1980),

focusing on the Gamma and Weibull models, Kappenman (1982), Taylor and Jakeman (1985),

Fearn and Nebenzahl (1991).

The probability density function of the three distributions considered in Marshall

and Olkin (2001) are given in below table.

Table 7 – Probability density functions in Marshall and Olkin (2001)
Family Probability density function
Weibull αλ (λx)α−1

Gamma Γ(ν)−1λ νxν−1exp−λx

MO-Exp γλexp−λx
(

1− (1− γ)exp−λx
)−2

Source: Author

The authors show that for their investigations the scale parameter is not important.

For the three distributions, they set the scale parameter such that the expected value of the random

variable with such distribution equals 1.

The reason for choosing these distributions is that they are similar in some aspects.

They all include the exponential distribution as special cases, they all have monotone hazard

rates, and they all have one parameter after setting the scale parameter accordingly.

For the experiment of choosing one distribution to the date, Marshall and Olkin

proceed as follows. The families are fitted to the data and the Kolmogorov-Smirnoff distance

is calculated for every fitted distribution. The one with the lower distance is chosen. Taylor

and Jakeman (1985) used this hybrid method. In one of their examples, they showed that if the

exponential, gamma and Weibull models are to compete on modeling exponential data, then

34

using this method provides more correct choices then using only the maximum likelihood alone.

Similar works on discrimination procedures can be seen in Pandy et al. (1991), Dyer (1973),

McDonald et al. (1995), Cox (1961) (using Bayesian methods), Siswadi and Quesenberry (1982),

Hogg et al. (1972), Atikinson (1970) and Olkin and Spielgman (1987).

For each combination of sample sizes and a selected set of parameters, Marshall and

Olkin (2001) generated data from each distribution, 100.000 samples for each configuration, to

estimate the probability of correctly choosing the parent model. The results from Mashall and

Olkin (2001) are summarizes as follows.

For the Weibull data, the correct selection probability is less if against a gamma

alternative if compared to a Marshall-Olkin-exponential alternative if the shape parameter is away

from 1. closer to 1, the Marshall-Olkin-exponential is preferred compared to the gamma. For

sample sizes lower than 400 and shape parameter between 0.9 and 1.1, the Weibull distribution

is the least likely to be chosen.

When the gamma distribution is the parent distribution, for shape parameter values

above 1, the Weibull distribution is more likely to be chosen than the Marshall-Olkin-exponential

distribution when only one alternative is given. For the two alternatives given at the same time,

the Weibull is more likely to be chosen over the Marshall-Olkin-exponential distribution for

shape parameter values away from 1. The opposite is true for values near 1. When the shape

parameter is near 1, the Marshall-Olkin-expoential distribution is mode likely to be chosen over

the gamma for reasonable sample sizes.

Finally, for the Marshall-Olkin-exponential data, with one alternative, the gamma

distribution is not as likely as the Weibull. One curious fact is that when the Weibull distribution is

presented as the alternative to the parent Marshall-Olkin-exponential, the Kolmogorov-Smirnoff

distance is mode likely to point out the correct distribution than the likelihood value for sample

sizes bellow 600.

3.3 A Brief Introduction to Deep Neural Networks and Keras Python Library

Machine learning is the are of Science consisting of studies on methods and algo-

rithms that perform a given task without being explicitly programmed to do so. These methods

and algorithms rely on patterns and rule based inference.

There is a vast spectrum of algorithms in machine learning. The previous chapter

dealt with the PIPE algorithm. For this chapter, neural networks are at focus. A neural network

35

is an organized sequence of neurons layers. Each neuron is a unit that receives the output of the

neurons of the previous layers and processes these inputs to produce an output. The neurons

from the first layer receive the data as input while the ones in the final layer produce the output

of the network. By presenting a series of input and output examples it is possible to adjust the

connections between layers to obtain accurate predictions of linear and non-linear patterns in the

data.

A neural network, loosely speaking, is a system of inputs and outputs vaguely based

on some biological process. Mathematically, let g be a function, xxx and yyy vectors such that

g(xxx) = yyy. Suppose that g is not easy or practical to be computed. A MLP can be used to

approximate g(xxx). This process is made in, usually, three steps.

1. Example collection: We provide some examples of pairs (xxx,yyy), such that yyy = g(xxx).

2. Learning or training: The network is trained to correctly assign each xxx to a value close to

its respective yyy.

3. Validation: During the training phase, it is possible to overfit the data. That means the

network will perform incredibly good in the example set but may perform very poorly for

xxx outside the example set. The validation phase checks if there is evidence of overfitting.

A neuron is the basic element of a MLP. It receives a value v and returns φ(v), where

φ(·) is called activation function and usually has range in [0,1] or [−1,1]. Neurons are organized

in layers. The first layer of neurons is proceeded by a layer of inputs of the network. Between

every input and neuron there is a weighted link called synapsis. The weight between neuron j

and input i is denoted ω1
i j. The input of this neuron j is v j = ∑

n
i=1 ωi j xi, where n is the number

of inputs of the network. Refer to Figure 5.

Figure 5 – A general MLP diagram

x1

x2

x3

x4

Input
layer

Neuron
layer

Neuron
layer

y1

y2

Output
layer

Source: Author

36

Th output of the jth neuron in the first layer will be denoted θ1 j = φ(v j). The outputs

will be the inputs of the next neurons layer, and so on. Finally, the last layer will have as many

neurons as g(xxx) has entries. The jth output of the last layer will be denoted θ j. It is usual to

make x1 = 1. A popular choice for φ(v) is φ(v) = (1+ e−v)−1, which is known as the sigmoid

function.

The learning process consists in adjusting the weights of the network to make its

output close to yyy for each corresponding xxx. A popular method of doing so is the back-propagation

algorithm. Consider the cost function

C =
1
2 ∑

j
(θ j− y j)

2, y j ∈ yyy. (23)

37

The weights can be adjusted in an iterative fashion aiming at reducing the value of

the cost function. The gradient of C regarding the weights ωi j can be shown to equal

∂C
∂ωi j

= δ j θi, with δ j =

(θ j− y j)θ j (1−θ j), if j is in the output layer,(
∑k δ j ω jk θ j (1−θ j)

)
, if j is not in the output layer,

where the summation carries over all k neurons in the proceeding layer j. Consider θ j as the jth

input of the network when adjusting the first layer of neurons. The above formula is valid only

when φ(v) is the sigmoid function. Some common stopping criteria are limiting the number of

interactions, stopping when the change in C is lower than a certain threshold, stopping when the

percent change in C is small enough.

An epoch is the number of iterations to update the weights once for every pair (xi,yi).

After each epoch, it is a good ideia to do an overfitting check. This is done by evaluating the

performance of the network in a different set than the one used to train the network. When the

performance in this test set begins to fall, stop network training.

Deep neural networks are network architectures able to extract higher level concepts

from data such as the comprehension on what is a digit, an animal or a mathematical formula

from the input. The input might be given as a picture of the object whose features are to be

discovered, an audio or text description or measurements from equipments such as MRI readings.

Deep neural networks have been used also to extract sentiment from text, a technique known as

sentiment analysis, or to classify texts by authors from their respectives writing styles.

To achieve such higher level concept comprehension, the architectures of such

methods, i. e., the layers structures and how they will be connected might be considerably

tricky both from computational and mathematical points of view. To implement such methods

from ground up requires a hefty amount of knowledge in programming languages, scientific

programming and mathematical computation. This leaves a huge gap between these methods

and the areas they could be useful in. To bring these methods closer to practitioners, frameworks

for deep learning have been proposed. Frameworks such as Tensorflow, Theano and Pytorch

greatly speed up the time to use deep neural networks. The framework we used in this work was

Tensorflow with a python library called Keras and runs atop of other frameworks.

This package was produced to allow fast implementations of such methods and

algorithms, indeed, more of an interface than a framework of machine learning. Another useful

layer of abstraction in the use of these models is the Anaconda Python distribution. The joint use

38

of these tools is, at the time of writing, the fastest way to deploy deep learning capabilities in the

typical personal computer setups.

These frameworks allowed many researchers of different fields to quickly use these

methods and this allowed significant advances in many areas such as medical research. The

evidence for this is in the large number of published papers in well established journals such as

Nature Communications and similar. A quick search on its front page reveals, for instance, the

works of Godec et al. (2019) on the analysis of biomedical images for breast cancer detection,

sub cellular protein localization, plant disease detection and much more. Johnson et al. (2019)

uses Keras (among other frameworks) to rain a model to estimate ages from brain structural MRI.

The difference between chronological age and predicted age from the brain image is a predictor

of brain deterioration and diseases. This study also unveiled two associated sequence variants

on DNA, one is related to reduced sulcal width and the other to reduced white matter surface

area. Some of these problems could be modeled by more traditional statistical methods but the

mathematical knowledge threshold for doing so is much higher. This study utilizes transfer

learning, which is training a model on a data set and utilizing it as a starting point in another

problem that may share similarities with the previous one. We will discuss possible impacts

of transfer learning on Statistical problems later on. Gomez-de-Mariscal et al. (2019) used

Keras to achieve segmentation of small extracellular vesicles (sEV) in transmission electron

microscopy (TEM). This is considered a difficult task since sEV’s are of the nano scale and

image preparation introduces a lot of statistical noise to the data. Their model outperformed

two state-of-the-art models for this task. Park et al. (2019) developed automatic detection of

pulmonary abnormalities using Keras.

Other papers are available on, for instance, new drugs research or new materials

research. the main goal of this section is to present clear evidence that machine learning methods

may provide useful tools for investigations in Statistics as well. In the next section we present one

example of such investigation based on the ideas of Marshall and Olkin (2001) and partially in

Jaynes (1954) on the maximum entropy characterizations of parametric families of distributions.

3.4 Our proposal

In this chapter, we propose to revisit the investigations from Marshall and Olkin

(2001) from the point of view of neural networks for classification. Our intention for pursuing

this direction is described as follows. Marshall and Olkin (2001) presented evidence that the

39

likelihood and Kolmogorov-Smirnoff distance are not absolutely reliable for pairing data to its

parent distribution. The neural networks, especially those easily scalable from Keras framework,

may be able to find hidden patterns in the data that may provide efficient ways of classifying

correctly according to the parent distribution. The natural candidate features of the data to hold

information about the distributions are the sample moments. As the data grows in sample size,

the sample moments approach the theoretical moments in probability. Given enough sample

moments, it is our expectation that the networks may be able to correctly assign data to its parent

distribution. One further evidence for our intuition is the maximum entropy characterization

from Jaynes (1954). This characterization is based on constraints of the form E[gi(X)] = ai,

for i = 1,2, . . . ,k, for a given k, real functions gi(·) and real numbers ai. For a set of such

constraints, the maximum entropy distribution is the one satisfying the constraints and the one

whose probability density function is a solution to f (x) = argmaxH (g), over a set of probability

density functions, where H (g) = E[− log(g(X))] is the Shannon entropy associated to g(x).

The maximum entropy characterization may be understood as the distribution that encompasses

all the information known about the random variable (stated as the constraints) assuming nothing

else. Thus, patterns in moments may identify uniquely the distribution. For instance, if the

constraints are IE[X] = µ and IE[(X−µ)2] = σ2, for real numbers µ and σ > 0, the maximum

entropy distribution is the normal distribution. This can be verified by using the Gibbs inequality:∫ +∞

−∞

log
(

f (x)
g(x)

)
f (x)dx > 0, (24)

where the left hand side of the inequality is known is the Kullback-Leibler divergence or relative

entropy.

Goodfellow et al. (2016) define this divergence is stated as followed. If we have

two separate probability distributions P(X) and Q(X) over the same random variable X, we can

measure how different these two distributions are using

DKL(P||Q) = EX [logP(X)− logQ(X)]. (25)

One most useful properties of KL divergence is that is non-negative. The divergence

is 0 if and only if P(X) and Q(X) are the same distribution for discrete variables and almost equal

in everywhere to continuous case. There is a misconception about the use of KL divergence.

Sometimes it is used as a distance but like some sort of distance but it lacks symmetric property:

DKL(P||Q) 6= DKL(Q||P).

40

Based on the suspicions, we used a Keras neural network with 3 fully connected

layers, i. e., every neuron from the previous layer is connected to each other neuron in the next

layer. We used the first 10 sample moments from artificially generated data sets as input. The

output is a label indicating the parent distribution of the generated data. The simulated sample

sizes were 100, 150, 200, 250, 500 and 1000. The shape parameter of these artificial samples

were uniformly generated on (1,5] interval. For each distribution, each sample size and each

parameter value we generated 50.000 samples, and calculated the sample moments. This is the

training data set. The output in training sample was coded as a dummy variable, the first 3 layers

have 150 neurons each with a sigmoid activation function on each neuron. The output layer has 3

neurons, each neuron representing one of the candidate parent distributions. Unlike in Marshall

and Olkin (2001), we set the scale parameter to 1 for all the distributions and don’t necessarily

have the expected value of the distributions equal to 1. This is reasonable since the training

data has all the inputs normalized, i. e., each collection of sample moments is re-centered and

re-scaled by the Keras functions for computational reasons.

The neural network was set to train for at most 10 epochs in batches of size 300.

That is, the network process 200 samples from the training set at a time to make neuron weight

adjustments. And early stopping criteria was used to stop the training if network accuracy

reaches 95% or more. That is supposed to avoid overfitting and also because we observed a fast

deterioration of the network performance above that level. The loss function we used was the

categorical cross entropy function implemented in Keras. This function is used for multi-class

classification tasks and its a modified version of cross entropy losses functions family and have a

closely relationship with KL divergence.

Cross-entropy is frequently used to measure difference between two pdf. The

grounded truth distribution is the one that our neural network is trying to predict and exposed in

terms of a one-hot probability distribution. This measure is calculated as described in Goodfellow

et al. (2016):

H(P,Q) = E(X) lnP(X). (26)

The categorical version also called Softmax Loss is a junction of softmax activation

with cross-entropy loss. In this loss function, we will train a neural network to output a probability

over the C classes of the problem and its defined by

41

σ(xxx)i =
exp(xi)

∑
K
j exp(x j)

, f or i = 1,2, · · · ,K and xxx = (x1,x2, · · · ,xk) ∈ RK (27)

Hcategorical =−
C

∑
i

ti ln(σ(xxx)i) (28)

The test data set where we verify the capabilities of the trained network was generated

in the exact same way as the training data set. The confusion matrix for the network classification

is shown in Table 8.

Table 8 – Confusion matrix for the classification of the generated data in the test set
True distribution Weibull Gamma MOE

Weibull 92,23% 6,52% 0,16%
Gamma 1,31 % 98,68% 0,00%
MOE 0,18 % 0,00% 99,82%

Source: Author

These results are overall superior than the ones obtained by main literature techniques

used in Marshall and Olkin (2001).

3.5 Chapter final remarks

The main implications of these findings are the evidence of room for developing

model selection methods based on sample moments and patterns in the theoretical moments. The

maximum entropy characterization may be one starting point for developing these techniques. It

is possible that this has to be developed on a per family basis, and in that case the neural network

approach seems more efficient. This is the second implication, the use of neural networks for

model selection. However, it is a considerable mathematical challenge to obtain theoretical

guarantees on the soundness of the such method. To promote a method based on neural networks

that works for a large set of probability distributions will most likely require a much larger and

deeper neural network. Incremental changes are possible for the development of such network

over time in a collaborative fashion by using transfer learning techniques. A network trained

for classification of a smaller set of distributions may be used as starting point to train a larger

network that classifies for more alternative distributions. Once trained this network can be readily

used in model selection tasks. We, however, advise strongly that model designing takes place

before using a model selection tool in an ad-hoc manner blindly. It is always desirable to have

a model devised from the underlying aspects of the data than choosing from a pool of models

possibly without theoretical connection to the data even if it means having a poorer fit to the data

42

when inference is a goal. For predictions of non-critical applications it might be reasonable to

choose the faster route.

43

4 FINAL REMARKS

In this text, we attempt to solve two problems of theoretical order in Statistics by

using machine learning algorithms. For the two problems the results were considerably positive.

The problem of approximating the normal distribution cumulative distribution func-

tion has been approached by many authors since it began to be of importance, that is, since the

gaussian kernel appeared as solution to many situations. While our method is not a substitute to

proper mathematical evaluation and a combination of algebraic insights and first or second order

approximations are still preferable, the use of an algorithm such as PIPE may provide solutions

to these approximation problems. Our investigation regarding other important distributions,

such as the Student’s t, did not provide much success due to a problem related to the choice

of the fitness function. The mean square error is very useful to penalize deviations from the

average. For the datasets we trained on, the algorithm was overfitting the distributions with the

degrees of freedom near the average value and the performance suffered on the rest of the data.

Asymmetric choices of the fitness function did not provide good results when compared to the

already existing approximations.

For the second problem, the main result is actually the evidence of possible deve-

lopments on the designing of new model choice methods based on the sample moments. There

results are largely superior to the ones using classical methods such as those on Marshall et al.

(2001). Another possible development is the designing and training of a neural network model

for the task of model selection. This will require a large computational capability for the training,

given the number of different distributions and the amount of data necessary. It also would

require a careful design of guidelines on updating the network when distributions are added to it.

This would be preferably done in a collaborative fashion. Thus, concerns on stability and version

control would arise. As for possible new tests, we emphasize the use of the maximum entropy

characterization from the works of Jaynes.

Machine learning methods are often seen among practitioners and academics as a

rival to Statistical methods. While it might be true for prediction tasks, where machine learning

has the upper hand, statistical models offer more interpretability. Nevertheless, machine learning

tools may be used to boost some areas of research in Statistics and related subjects. Also, major

attempts are in course for more interpretable machine learning models.

44

REFERENCES

ATKISON, A. C. A method for discriminating between models. Journal of the Royal Statistical

Society: Series B (Methodological), [S.I.], v. 32, n. 3, p. 323–353, set.1970.

BAIN, Lee J.; ENGELHARDT, Max. Probability of correct selection of weibull versus gamma

based on livelihood ratio. Communications in Statistics, Theory and Methods, [S.I.], v. 9, n.4,

p. 375–381, 1980.

BOWLING, Shannon R.; KHASAWNEH, M. T.; KAEWKUEKOOL, S.; CHO, B. R. A Logistic

approximation to the cumulative normal distribution. Journal of Industrial Engineering and

Management, [S.I.], v. 2, n. 1, p. 114–127, 2009.

CADWELL, J. H. The bivariate normal integral. Biometrika, [S.I.], v. 38, n. 3-4, p. 475–479,

1951.

COORAY, Kahadawala; ANANDA, Malwane M. A. A generalization of the half-normal distribu-

tion with applications to lifetime data. Communications in Statistics, Theory and Methods,

[S.I.], v. 37, n. 9, p. 1323–37, 2008.

COX, D. R. Tests of separate families of hypotheses. In: BERKELEY SYMPOSIUM ON

MATHEMATICAL STATISTICS AND PROBABILITY, 4., 1961, Berkeley. Proceedings [...].

Berkeley: University of California Press, 1961. p. 105-123.

DOMBI, József; JÓNÁS, Tamás. Approximations to the normal probability distribution function

using operators of continuous-valued logic. Acta Cybernetica, [S.L.], v. 23, n. 3, p. 829–852,

2018.

DYER, Alan R. Discrimination procedures for separate families of hypotheses. Journal of the

American Statistical Association, [S.L.], v. 68, n. 344, p. 970–974, 1973.

ELDERTON, W. P.; JOHNSON, N. L. Systems of frequency curves. Cambridge: University

Press, 1969.

FEARM, D. H.; NEBENZAHL, E. On the maximum likelihood ratio method of deciding between

the weibull and gamma distributions. Communications in Statistics - Theory and Methods,

[S.L.], v. 20, n. 2, p. 579–593, 1991.

45

GODEC, Primož et al. Democratized image analytics by visual programming through inte-

gration of deep models and small-scale machine learning. Nature Communications, [S.L.],

v. 10, n. 4.551, out. 2019. DOI: https://doi.org/10.1038/s41467-019-12397-x. Disponível em:

https://www.nature.com/articles/s41467-019-12397-x.

GÓMEZ-DE-MARISCAL, Estibaliz et al. Deep learning-based segmentation of small ex-

tracellular vesicles in transmission electron microscopy images. Scientific Reports, [S.L.],

v. 9, n. 13.211, set. 2019. DOI: https://doi.org/10.1038/s41598-019-49431-3. Disponível em:

https://www.nature.com/articles/s41598-019-49431-3.

GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep learning: adaptive com-

putation and machine learning. Massachusetts: The MIT Press, 2016.

HOGG, Robert V. et al. On the selection of the underlying distribution and adaptive estimation.

Journal of the American Statistical Association, [S.L.], v. 67, n. 339, p. 597-600, 1972.

HOYT, John P. The Teacher’s Corner: A simple spproximation to the standard normal probability

density function. The American Statistician, [S.L.], v. 22, n. 2. p. 25–26, 1968.

JAYNES, E. T. Information theory and statistical mechanics. Physics Reviews, [S.L.], v.106, n.

4, p. 620–30, 1957.

JONSSON, B. A. et al. Brain age prediction using deep learning uncovers as-

sociated sequence variants”. Nature Communications, [S.L.], v. 10, n. 5.909,

nov. 2019. DOI: https://doi.org/10.1038/s41467-019-13163-9. Disponível em:

https://www.nature.com/articles/s41467-019-13163-9.

KAPPENMAN, Russell F. On A method for selecting a distributional model. Communications

in Statistics - Theory and Methods, [S.L.], v.11, n. 6, p. 663–672, 1982.

LIN, Jinn-Tyan. A simpler logistic approximation to the normal tail probability and its inverse.

Journal of the Royal Statistical Society. Series C (Applied Statistics), [S.L.]: Wiley, v. 39, n. 2,

p. 255–257. 1990.

LIN, Jinn-Tyan. Approximating the normal tail probability and its inverse for use on a pocket

calculator. Journal of the Royal Statistical Society. Series C (Applied Statistics), [S.L.]: Wiley,

v. 38, n. 1, p. 69–70, 1989.

MARSHALL, A. W.; MEZA, J. C.; OLKIN, I. Can data recognize its parent distribution?.

Journal of Computational and Graphical Statistics, [S.L.], v. 10, n. 3, p. 555–580, 2001.

46

OLKIN, Ingram; SPIEGELMAN, Clifford H.. A semiparametric approach to density estimation.

Journal of the American Statistical Association, [S.I.], v. 82, n. 399, p. 858–65, set. 1987.

PANDEY, M.; FERDOUS, Jannatual; UDDIN, Md Borhan. Selection of probability distribution

for life testing data. Communications in Statistics - Theory and Methods, [S.I.], v. 20, n. 4,

p.1373–1388, 1991.

PARK, Beomhee et al. A curriculum learning strategy to enhance the accuracy of classification

of various lesions in Chest-PA X-ray screening for pulmonary abnormalities. Scientific Report,

[S.L.], v. 9, n. 15352, 2019. DOI: https://doi.org/10.1038/s41598-019-51832-3. Disponível em:

https://www.nature.com/articles/s41598-019-51832-3.

PEARSON, Karl. Contributions to the mathematical theory of evolution – II: skew variation

in homogeneous material. Philosophical Transactions of the Royal Society of London. [S.I.],

London, v. 186, p. 343–414, 1895.

PEARSON, Karl.Mathematical contributions to the theory of evolution – X: supplement to

a memoir on skew variation. Philosophical Transactions of the Royal Society of London:

Series A, Containing Papers of a Mathematical or Physical Character, [S.I.], London, v. 68, p.

442–450, 1901.

PIANTADOSI, Steven T. One parameter is always enough. AIP Advances, [S.I.], v. 8, n. 9, set.

2018. Disponível em: https://aip.scitation.org/doi/10.1063/1.5031956.

PÓLYA, G. Remarks on computing the probability integral in one and two dimensions. In:

BERKELEY SYMPOSIUM ON MATHEMATICAL STATISTICS AND PROBABILITY, [1.],

1949, Berkeley. Proceedings [...]. Berkeley: University of California Press, 1949. p. 63-78.

SALUSTOWICZ, Rafal, SCHMIDHUBER, Jurgen. Probabilistic incremental program evolution:

stochastic search through program space. 1997, in. SOMEREN, Van; WIDNER, G. Machine

Learning: ECML-97 – Lecture Notes in Computer Science. Berlin, Heidelberg: Springer.

1997. p. 213 – 220.

SISWADI, C. P. Quesenberry. Selecting among weibull, lognormal and gamma distributions

using complete and censored smaples. Naval Research Logistics Quarterly, [S.L.], v. 29, n. 4,

p. 557–569, 1982.

TAYLOR, John A.; JAKEMAN, Anthony J. Identification of a distributional model. Communi-

cations in Statistics - Simulation and Computation, [S.L.], v. 14, n. 2, p. 497–508, 1985.

47

TOCHE, K. D. The art of simulation. London: English Universities Press. 1963.

WACHTMAN, J. B. Mechanical properties of ceramics. New York: Wiley, 1996.

48

ANEXO A – PIPE AND KERAS NEURAL NETWORK SOURCE CODE

You can find the code developed in this text at shorturl.at/cfgmF

	Folha de rosto
	ACKNOWLEDGMENTS
	Resumo
	Abstract
	Summary
	Introduction
	Normal Cumulative Distribution Function Approximation
	Existing approximations for the normal distribution cumulative distribution function
	Proposed approximation
	An example of use for the approximation outside Statistics
	The PIPE algorithm
	Chapter final remarks

	Neural Networks for model selection problems
	Model selection methods
	Results from Marshall and Olkin (2001)
	A Brief Introduction to Deep Neural Networks and Keras Python Library
	Our proposal
	Chapter final remarks

	Final remarks
	REFERENCES
	PIPE and Keras Neural Network Source Code

