Please use this identifier to cite or link to this item:
http://repositorio.ufc.br/handle/riufc/48256
Type: | Tese |
Title: | Development of strategies for the production of biocatalysts through immobilization / co-immobilization of lipase from Pseudomonas fluorescens |
Authors: | Rios, Nathalia Saraiva |
Advisor: | Gonçalves, Luciana Rocha Barros |
Co-advisor: | Fernández-Lafuente, Roberto |
Keywords: | Engenharia química;Lipase;Biocatalisadores;Immobilization;Pseudomonas fluorescens |
Issue Date: | 2019 |
Citation: | RIOS, N. S. Development of strategies for the production of biocatalysts through immobilization / co-immobilization of lipase from Pseudomonas fluorescens. 2019. 239 f. Tese (Doutorado em Engenharia Química) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2019. |
Abstract in Brazilian Portuguese: | Neste estudo, lipase de Pseudomonas fluorescens (PFL) foi imobilizada e co-imobilizada por diferentes estratégias, produzindo uma biblioteca de biocatalisadores capazes de catalisar reações de interesse industrial em diferentescondições operacionais. Os suportes baseados em agarose e nanopartículas magnéticas foram utilizados para a imobilização e co-imobilização de lipases. Para produzir biocatalisadores altamente ativos, a estratégia de imobilização da lipase na sua na forma aberta foi conduzida por adsorção em suportes hidrofóbicos (octil-agarose e octil-nanopartículas), imobilização em suportes heterofuncionais contendo grupos hidrofóbicos (glioxil-octil-agarose) e ligação covalente no suporte ativado na presença de surfactantes (TEOS-nanopartículas). As estratégias de co-imobilização foram derivadas de algumas estratégias de imobilização: multicamadas de PFL foram derivadas da imobilização de PFL por adsorção interfacial em octil-agarose, cuja camada de PFL é imobilizada sobre a anterior para multiplicar a capacidade de carga final do suporte; PFL também foi co-imobilizado com outras lipases (RML ou LU) usando suporte herofuncional (Glioxil-octil-agarose) para reutilizar a lipase mais estável (PFL) após inativação, dessorção e imobilização da lipase menos estável. Esses biocatalisadores co-imobilizados podem catalisar reações enzimáticas em cascata ou catalisar reações envolvendo substratos heterogêneos, como a modificação de óleos e gorduras. Por outro lado, biocatalisadores produzidos por imobilização em suportes à base de agarose geralmente são aplicados para catalisar substratos solúveis (na qual o substrato pode facilmente penetrar nos poros do suporte) e biocatalisadores produzidos por imobilização em suportes baseados em nanopartículas magnéticas geralmente são aplicados na catalise de substratos grandes ou insolúveis, no qual a enzima é imobilizada na superfície do suporte, permitindo o contato da lipase com o substrato. |
Abstract: | In this study, lipase from Pseudomonas fluorescens (PFL) was immobilized and co-immobilized by different strategies, producing a biocatalyst library able to catalyze reactions of industrial interest in some operational conditions. Agarose and magnetic nanoparticles based supports were used as support for lipase immobilization and co-immobilization. In order to produce highly active biocatalysts, the strategy of immobilization in the open-form of lipase was maintained through adsorption on hydrophobic supports (Octyl-agarose and Octyl-nanoparticles), immobilization on heterofunctional supports containing hydrophobic groups (Glyoxyl-octyl-agarose) and covalent attachment on activated support in presence of surfactants (TEOS-nanoparticles). The strategies of co-immobilization were derived of some immobilization strategies: Multilayers of PFL were derived from the immobilization of PFL by interfacial adsorption on Octyl-agarose, which one layer of PFL is immobilized over the previous to multiply the final loading capacity of the support; PFL also was co-immobilized with other lipases (RML or LU) using the hererofunctional support (Glyoxyl-octyl-agarose) to reuse the more stable lipase (PFL) after inactivation, desorption and immobilization of the least stable lipase. These co-immobilized biocatalysts catalyze enzymatic cascade reactions or catalyze reactions involving heterogeneous substrates, such as modification of oils and fats. On the other hand, biocatalysts produced by immobilization on agarose-based supports generaly are applied to catalyze soluble substrates (which the substrate can easily penetrate into the pores of the support) and biocatalysts produced by immobilization on magnetic nanoparticles-based supports generaly are applied to catalyze insoluble or large substrates, which the enzyme is immobilized on the surface of the support, enabling the contact of the lipase with the substrate. |
URI: | http://www.repositorio.ufc.br/handle/riufc/48256 |
Appears in Collections: | DEQ - Teses defendidas na UFC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2019_tese_nsrios.pdf | 938,78 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.