

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA QUÍMICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA

NATHALIA SARAIVA RIOS

DEVELOPMENT OF STRATEGIES FOR THE PRODUCTION OF BIOCATALYSTS THROUGH IMMOBILIZATION / CO-IMMOBILIZATION OF LIPASE FROM *Pseudomonas fluorescens*

FORTALEZA 2019

NATHALIA SARAIVA RIOS

DEVELOPMENT OF STRATEGIES FOR THE PRODUCTION OF BIOCATALYSTS THROUGH IMMOBILIZATION / CO-IMMOBILIZATION OF LIPASE FROM Pseudomonas fluorescens

Tese apresentada ao Programa de Pós-Graduação em Engenharia Química da Universidade Federal do Ceará, como requisito parcial à obtenção do título de Doutora em Engenharia Química. Área de concentração: Processos Químicos e Bioquímicos

Orientadora: Profa. Dra. Luciana Rocha Barros Gonçalves. Coorientador: Prof. Dr. Roberto Fernández Lafuente.

Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

R453d Rios, Nathalia Saraiva.

Development of strategies for the production of biocatalysts through immobilization / coimmobilization of lipase from Pseudomonas fluorescens / Nathalia Saraiva Rios. – 2019. 239 f. : il. color.

Tese (doutorado) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia Química, Fortaleza, 2019. Orientação: Profa. Dra. Luciana Rocha Barros Gonçalves. Coorientação: Prof. Dr. Roberto Fernández Lafuente.

1. Imobilização. 2. Co-imobilização. 3. Lipase de Pseudomonas fluorescens. I. Título.

CDD 660

NATHALIA SARAIVA RIOS

DEVELOPMENT OF STRATEGIES FOR THE PRODUCTION OF BIOCATALYSTS THROUGH IMMOBILIZATION / CO-IMMOBILIZATION OF LIPASE FROM *Pseudomonas fluorescens*

Thesis presented to the Post Graduate Program in Chemical Engineering of the Federal University of Ceará, as a partial requirement to obtain the title of Doctor of Chemical Engineering. Concentration Area: Chemical and Biochemical Processes.

Approved on: _04 _ / _11 _ / _2019 ____.

EXAMINATION BOARD

Profa. Dra. Luciana Rocha Barros Gonçalves (Orientadora) Universidade Federal do Ceará (UFC)

> Prof. Dr. Enrique Vilarrasa García Universidade Federal do Ceará (UFC)

Profa. Dra. Maria Cristiane Martins de Souza Universidade da Integração Internacional da Lusofonia Afro-Brasileira (UNILAB)

> Prof. Dr. Pierre Basílio Almeida Fechine Universidade Federal do Ceará (UFC)

Profa. Dra. Raquel Petrilli Eloy Universidade Federal do Ceará (UFC)

To God.

To my Family, especially to my parents, Ilzanir and Antonio, my brother, Victor, and my husband, Candido; People who I love that are always by my side.

ACKNOWLEDGMENTS

Thank God for blessing my steps on this journey and helping me overcome all obstacles. I thank my parents for always helping to achieve my goals and my brother Victor for their support and understanding. I thank my husband Cândido, who has always been at my side, for his invaluable support and understanding.

I thank my grandmother Maria for always believing in my potential. To my godfathers, Graça and Daniel, who always cheered for me. To my aunts, Irene and Socorro, for the support in those years and for the patience.

To Prof^a Dr^a. Luciana Rocha Barros Gonçalves, for the trust deposited, for all the opportunities, for all the teachings and the dedication in my orientation. To Prof Dr. Roberto Fernández Lafuente for welcoming me so well in his lab in Madrid, for the trust and dedication in my orientation.

To my friends of the Laboratory of Enzymatic Processes (GPBio): Ticiane, Ravenna, Renata, Eddie, Juliana, Layanne, Carlinha, Eva, Mary for the support in carrying out this work. To my friends of the Laboratory 301 (Madrid-Spain): Sara, Carmen, Yuliha (lipase group – the best!), Yako, Roberto/Bob, Hocine, Diego, Javier, Juan, Lucas e Priscila. To my friends of heart Bruna, Dayanne, Aline, Rayanne, Maisa and Kimberle for always being by my side supporting me in my decisions.

To Federal University of Ceará (UFC) and Department of Post-Graduation in Chemical Engineering-UFC for the support to the development of the thesis. To Institute of Catalysis and Petroleumchemistry (ICP-CSIC/ Madrid-Spain) for the support and for welcoming me in my stay in Madrid. To Director del ICP Dr. Enrique Sastre. To project - grant number CTQ2017-86170-R (Spain).

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 (Brazil fellowship – (2017-2018)). To Conselho Nacional de Desenvolvimento Científico e Tecnológico, a Brazilian agency for scientific and technological development, for financial support (Brazil fellowship – (2016-2017) /Doctorate Sandwich fellowship - (2018-2019)).

To the examination board composed by Enrique Vilarrasa García, Maria Cristiane Martins de Souza, Pierre Basílio Almeida Fechine, Raquel Petrilli Eloy for the valuable collaborations and suggestions. To all those who contributed directly and indirectly to my academic and professional training.

"Those who feel satisfied sit and do nothing. The dissatisfied are the only benefactors in the world". Walter S. Landor

RESUMO

Neste estudo, lipase de Pseudomonas fluorescens (PFL) foi imobilizada e co-imobilizada por diferentes estratégias, produzindo uma biblioteca de biocatalisadores capazes de catalisar reações de interesse industrial em diferentescondições operacionais. Os suportes baseados em agarose e nanopartículas magnéticas foram utilizados para a imobilização e co-imobilização de lipases. Para produzir biocatalisadores altamente ativos, a estratégia de imobilização da lipase na sua na forma aberta foi conduzida por adsorção em suportes hidrofóbicos (octil-agarose e octil-nanopartículas), imobilização em suportes heterofuncionais contendo grupos hidrofóbicos (glioxil-octil-agarose) e ligação covalente no suporte ativado na presença de surfactantes (TEOS-nanopartículas). As estratégias de co-imobilização foram derivadas de algumas estratégias de imobilização: multicamadas de PFL foram derivadas da imobilização de PFL por adsorção interfacial em octil-agarose, cuja camada de PFL é imobilizada sobre a anterior para multiplicar a capacidade de carga final do suporte; PFL também foi co-imobilizado com outras lipases (RML ou LU) usando suporte herofuncional (Glioxil-octil-agarose) para reutilizar a lipase mais estável (PFL) após inativação, dessorção e imobilização da lipase menos estável. Esses biocatalisadores co-imobilizados podem catalisar reações enzimáticas em cascata ou catalisar reações envolvendo substratos heterogêneos, como a modificação de óleos e gorduras. Por outro lado, biocatalisadores produzidos por imobilização em suportes à base de agarose geralmente são aplicados para catalisar substratos solúveis (na qual o substrato pode facilmente penetrar nos poros do suporte) e biocatalisadores produzidos por imobilização em suportes baseados em nanopartículas magnéticas geralmente são aplicados na catalise de substratos grandes ou insolúveis, no qual a enzima é imobilizada na superfície do suporte, permitindo o contato da lipase com o substrato.

Palavras-chave: Imobilização. Co-imobilização. Lipase de Pseudomonas fluorescens

ABSTRACT

In this study, lipase from Pseudomonas fluorescens (PFL) was immobilized and coimmobilized by different strategies, producing a biocatalyst library able to catalyze reactions of industrial interest in some operational conditions. Agarose and magnetic nanoparticles based supports were used as support for lipase immobilization and coimmobilization. In order to produce highly active biocatalysts, the strategy of immobilization in the open-form of lipase was maintained through adsorption on hydrophobic supports (Octyl-agarose and Octyl-nanoparticles), immobilization on heterofunctional supports containing hydrophobic groups (Glyoxyl-octyl-agarose) and covalent attachment on activated support in presence of surfactants (TEOSnanoparticles). The strategies of co-immobilization were derived of some immobilization strategies: Multilayers of PFL were derived from the immobilization of PFL by interfacial adsorption on Octyl-agarose, which one layer of PFL is immobilized over the previous to multiply the final loading capacity of the support; PFL also was co-immobilized with other lipases (RML or LU) using the hererofunctional support (Glyoxyl-octyl-agarose) to reuse the more stable lipase (PFL) after inactivation, desorption and immobilization of the least stable lipase. These co-immobilized biocatalysts catalyze enzymatic cascade reactions or catalyze reactions involving heterogeneous substrates, such as modification of oils and fats. On the other hand, biocatalysts produced by immobilization on agarosebased supports generaly are applied to catalyze soluble substrates (which the substrate can easily penetrate into the pores of the support) and biocatalysts produced by immobilization on magnetic nanoparticles-based supports generaly are applied to catalyze insoluble or large substrates, which the enzyme is immobilized on the surface of the support, enabling the contact of the lipase with the substrate.

Keywords: Immobilization. Co-immobilization. Lipase from Pseudomonas fluorescens

FIGURES LIST

Figure 1.1 –	Shematic representation of biocatalysts that will be studied in this work	30
Figure 2.1 –	Lipase from <i>Pseudomonas</i> closed and open form. Protein data bank codes: closed form (10IL), open form (2LIP). Active sites: Serine, Aspartate and Histidine	39
Figure 2.2 –	Effect of detergents on the structure of lipase from <i>Pseudomonas</i>	43
Figure 2.3 –	Purification of enzymatic extract by immobilization on ionic exchange matrices.	52
Figure 2.4 –	Schematic representation of chemical modification of lipases from <i>Pseudomonas</i>	53
Figure 2.5 –	Schematic representation of strategies of immobilization of lipases from <i>Pseudomonas</i>	56
Figure 2.6 –	Adsorption process of lipases from <i>Pseudomonas</i> on hydrophobic supports	57
Figure 2.7 –	Model reaction of transesterification catalyzed by lipases from <i>Pseudomonas</i>	68
Figure 3.1 –	Immobilization course of PFL in octyl agarose (A) and glyoxyl-octyl-agarose (B). The experiments were performed using 1mg of enzyme/g of support. Other specifications are described in Methods. Solid squares: reference; solid circles: supernatant; empty triangles: suspension	109
Figure 3.2 –	Effect of the incubation of the activity of glyoxyl-octyl-PFL biocatalyst before reduction in 50 mM sodium carbonate-bicarbonate at pH 10.5 and 25°C. Experiments were performed as described in Methods	110
Figure 3.3 –	Desorption of immobilized PFL in the presence of growing concentrations of Triton X-100 ($0.5 - 4 \% - v/v$) in 50 mM Tris at pH 7 and 25°C. Solid circles: Octyl-PFL biocatalyst; Solid squares: Glyoxyl-octyl-PFL biocatalyst	111
Figure 3.4 –	Inactivation profiles of different PFL preparations incubated under different conditions: 75 °C, pH 5 (A); 70 °C, pH 7 (B) and 65 °C, pH 9 (C). Other	

	specifications are described in methods. Solid circles: Octyl-PFL biocatalyst;	
	Solid squares: Glyoxyl-octyl-PFL biocatalyst 113	
.5 –	Effect of the presence of some ions on the inactivation profiles of different PFL	
	biocatalysts incubated at pH 7 and 70°C. 50 mM sodium phosphate versus Tris	
	(A); 50 mM Tris with or without addition of 10 mM CaCl ₂ (B). Other	
	specifications are described in methods. Tris buffer without addition of further	
	ions: solid line; Addition of other buffers (phosphate) or some additional salts	

Figure 3

- Figure 4.3 Effect of enzyme loading in the inactivation courses of octyl PFL biocatalysts.
 Inactivation carried out in 50 mM Tris at pH 7 and 75 °C. Experiments details as described in Methods. Squares: highly loaded biocatalyst; Circles: lowly loaded biocatalyst.
- Figure 4.4 Effect of PEI coating of lowly (A) and highly (B) loaded PFL octyl biocatalysts. Inactivation carried out in 50 mM Tris at pH 7 and 75 °C. Other details are 131

described in Methods section. Circles: unmodified preparations. Squares: PEI coated preparations.

Figure 4.5 – SDS-PAGE of the different immobilized PFL preparations. The experiments were performed as described in Methods (load was 80 mg/g per layer). Lane 1: Low molecular marker; Lane 2: OA-PFL, Lane 3, OA-PFL-PEI, Lane 4: OA-PFL-PEI-PFL, Lane 5: OA-PFL-PEI-PFL-PEI, Lane 6: OA-PFL-PEI-PFL-PEI-Figure 4.6 – SDS-PAGE of the glutaraldehyde modified PFL preparations. The experiments were performed as described in Methods (load was 80 mg/g per layer). Lane 1: Low molecular marker; Lane 2: OA-PFL-PEI-PFL-Glutaraldehyde, Lane 3: OA-PFL-PEI-PFL-Glutaraldehyde-PEI, Lane 4: OA-PFL-PEI-PFL-Figure 4.7 – Effect of glutaraldehyde modification of OA-PFL-PEI biocatalysts preparations at different enzyme loadings (A: lowly loaded, B: highly loaded). Inactivation was carried out in 50 mM Tris at pH 7 and 75 °C as described in Methods. Solid symbols: PEI coated octyl-PFL; Hollow symbols: Glutaraldehyde modified biocatalysts...... 139 Figure 5.1 – - Immobilization course PFL (A), RML (B) and LU (C) in octyl agarose beads. The experiments were performed using an enzyme loading of 1mg/g of support as described in Methods. Solid squares: reference, solid circles: supernatant; Figure 5.2 - Inactivation profiles of different lipase biocatalysts incubated under different conditions. Other specifications are described in methods. Residual activity was determined at pH 7 and 25°C. 55 °C, pH 7 (A); 55 °C, pH 5 (B); 50 °C, pH 5 (C) and 42°C, pH 9 (D). Solid circles: Octyl-PFL; Solid triangles: Octyl-RML; Solid squares: Octyl-LU...... 154 Figure 5.3 – Inactivation profile of different lipase preparations incubated in the presence of 30 % (v/v) of different cosolvents. Acetonitrile (A); 1,4-dioxane (B) and dimethylformamide (C). The experiments were performed at pH 7 and 25 °C as described in Methods. Solid circles: Octyl-PFL; Solid triangles: Octyl-RML; Solid squares: Octyl-LU...... 155

- Figure 5.7 Courses of immobilization in the production of combibiocatalysts. Activity is given per gram of wet support used in the experiment. Experiments were carried out as described in Methods (A) LU immobilized on reduced glyoxyl-octyl-PFL.
 Solid line, empty square: LU reference; Solid line, solid square: suspension; Dotted line, empty squares: supernatant; Solid line, solid circle: reduced glyoxyl-octyl-PFL.
 Solid line, empty triangle: RML reference; Solid line, solid triangle: suspension; Dotted line, empty triangle: supernatant; Solid line, solid circle: reduced glyoxyl-octyl-PFL.
- Figure 5.8 SDS-PAGE analysis of combi-biocatalysts PFL-RML/PFL-LU. Lane 1: molecular weight marker, Lane 2: Octyl-PFL; Lane 3: Octyl-RML; Lane 4: Octyl-LU; Lane 5: COMBI-PFL-RML; Lane 6: COMBI-PFL-RML washed

with triton 4%; Lane 7: COMBI-PFL-LU; Lane 9: COMBI-PFL-LU washed with triton 4%. Experiments were performed as described in Methods...... 160

Figure 6.1 – Schematic representation of the production of OCTYL-NANO-PFL...... 175

- Figure 6.2 XRD pattern of the NiZnFe₂O₄ nanoparticles. The black line represents the experimental data (Yobs), the dark gray line represents calculated intensities obtained through the refinement (Ycal) and the light gray line represents the relative difference between experimental and calculated data (Yobs-Ycal)...... 178

- Figure 6.5 Immobilization course of PFL on OCTYL-NANO. Relative total activities of reference (°) and supernatant (•) during immobilization and expressed activities during immobilization (■). The lines represent the tendency of experimental data. 100% is taken as the initial activity of PFL in both cases.....

Figure 6.6 –	Inactivation courses of differently modified OCTYL-NANO-PFL at 60 °C at different pH values. Unmodified biocatalyst (A); -GA 0.5 % modified biocatalyst – solid lines and -GA 5 % modified biocatalyst – dashed lines (B); - DVS 0.5 % modified biocatalyst – solid lines and -DVS 1 % modified biocatalyst – dashed lines (C); -BQ 0.5 % modified biocatalyst – solid lines and -BQ 5 % modified biocatalyst – dashed lines (D). Experiments have been performed in sodium citrate buffer at pH 5 (\bullet), sodium phosphate buffer at pH 7 (\bullet) and sodium carbonate-bicarbonate buffer at pH 9 (\blacktriangle)	188
Figure 6.7 –	Loading capacity of PFL on octyl-nanoparticles. Immobilization yield (\bullet) and expressed activity (\blacksquare)	189
Figure 6.8 –	SDS-PAGE gels of different PFL immobilized preparations. Lane 1: Molecular weight marker; Lane 2: soluble PFL; Line 3: unmodified biocatalyst (OCTYL-NANO-PFL); Lane 4: OCTYL-NANO-PFL-GA 0.5 %; Lane 5: OCTYL-NANO-PFL-GA 5 %; Lane 6: OCTYL-NANO-PFL-DVS 0.5 %; Lane 7: OCTYL-NANO-PFL-DVS 1 %; Lane 8: OCTYL-NANO-PFL-BQ 0.5 %; Lane 9: OCTYL-NANO-PFL-BQ 5 %.	190
Figure 6.9 –	Reuse of different immobilized PFL magnetic biocatalyst in the hydrolysis of $pNPB \ 1 \ mM. \ OCTYL-NANO-PFL: \ Solid \ line (\Box); \ OCTYL-NANO-PFL-GA 0.5 %: Dashed line (•); \ OCTYL-NANO-PFL-GA 5 %: Solid \ line (•); \ OCTYL-NANO-PFL-DVS 0.5 %: Dashed \ line (u); \ OCTYL-NANO-PFL-DVS 1 %: Solid \ line (u); \ OCTYL-NANO-PFL-BQ 0.5 %: Dashed \ line (b); \ OCTYL-NANO-PFL-BQ 5 %: Solid \ line (b).$	191
Figure 7.1 –	Schematic representation of the preparation of TEOS-NANO-DVS-PFL and TEOS-NANO-BQ-PFL.	208
Figure 7.2 –	FTIR spectra of samples of unmodified NiZnFe ₂ O ₄ nanoparticles and TEOS nanoparticles. Experiments were performed as described in Methods. On the left: measures conducted at FTIR Agilent technologies ATR spectrometer (4000 – 600 cm^{-1}). On the right: measures conducted at Perkin Elmer spectrometer (760 – 400 cm^{-1}).	213
Figure 7.3 –	Effect of different surfactants on the stability of free PFL. A: Anionic surfactant	

- SDS; B: Cationic surfactant - CTAB; C: Non-ionic surfactant - Triton X-100. 215

Experiments were performed at pH 7 and 25°C, other specifications are described in methods. Concentration of surfactants: Control – 0 %: Solid line (\bullet); 0.01 %: Dashed line (\bullet); 0.05 %: Solid line (\blacktriangle); 0.1 %: Dashed line (\Box). The relative activity was calculated considering as 100 % the lipase activity in initial time of assay. The lines represent the tendency of the experimental data....

- Figure 7.9 Operational stability of TEOS-NANO-BQ-PFL (●) and TEOS-NANO-PFL (■) preparations. Hydrolysis of *p*NPB was carried out at 25 °C, aqueous medium and pH 7. Other specifications are described in methods. The lines represent the tendency of experimental data.

TABLES LIST

Table 2.1	- Properties of lipases from <i>Pseudomonas</i>	95
Table 2.2	 Conditions, nutrient sources and systems used to optimize the production of several strains of lipases from <i>Pseudomonas</i> 	97
Table 2.3	- Strategies of immobilization of lipases from <i>Pseudomonas</i>	98
Table 2.4	- Application of lipases from <i>Pseudomonas</i>	100
Table 4.1	 Mass activity of different PFL biocatalysts in hydrolysis of 1 mM pNPB at 25 °C at pH 7. Experiments were performed as described in Methods. The loading of each layer as fairly similar, around 60-65 mg of protein/g of octyl agarose 	132
Table 4.2	 Mass activity of different PFL biocatalysts in hydrolysis of 50 mM triacetin at pH 5. Activity is given in micromoles of acetic acid released per minute and gram of biocatalysts. T1: 25 °C. T2: 4 °C in the presence of 30 % acetonitrile (v/v). Experiments were carried out as described in Methods 	135
Table 4.3	 Effect of the glutaraldehyde treatment of the PFL biocatalysts on enzyme activity in the hydrolysis of 50 mM triacetin at pH 5. T1: 25 °C. T2: 4 °C in the presence of 30 % acetonitrile (v/v). The data are given as relative activity, considering the activity of the respective no treated preparation as 100%. Experiments were performed as described in Methods 	137
Table 6.1	 Structural parameters of the NiZnFe₂O₄ nanoparticles obtained from Rietvield refinement. 	179
Table 6.2	– Vibrational modes of FTIR spectra of NiZnFe ₂ O ₄ nanoparticles. Stretching vibration (ν) and bending vibration (δ)	181
Table 6.3	- Magnetic properties of the different samples	182
Table 6.4	 Effect of different treatments on activity and stability of the PFL immobilized preparations. Activity values are given as relative activity and the stability factor were calculated considering the unmodified biocatalyst as a 100 %. Inactivation conditions: 60 °C, 25 mM sodium phosphate buffer at pH 7 	185
Table 7.1	- Values of the parameters of immobilization and thermal stability of TEOS- NANO-DVS-PFL biocatalyst. Immobilization conditions: sodium phosphate	

LIST OF ABBREVIATIONS

BQ	<i>p</i> -Benzoquinone
CTAB	Cetyltrimethylammonium Bromide
DVS	Divinylsulfone
FTIR	Fourier-Transform Infrared spectroscopy
GA	Glutaraldehyde
LU	Lecitase Ultra
OA	Octyl-agarose
OCTYL-NANO	Nanoparticles coated with octyltriethoxysilane
OTES	Octyltriethoxysilane
<i>p</i> NPB	<i>p</i> -Nitrophenyl Butyrate
PFL	Lipase from Pseudomonas fluorescens
RML	Lipase from Rhizomucor miehei
SDS	Sodium dodecyl sulfate
TEOS	Tetraethoxysilane
TEOS-NANO	Nanoparticles coated with tetraethoxysilane
VSM	Vibrating Sample Magnetometry

SUMMARY

1	INTRODUCTION AND OBJECTIVES	26
1.1.	Introduction	27
1.2.	Objectives	30
1.2.1.	General objective	30
1.2.2.	Specific objectives	30
1.3.	References	31
2	LITERATURE REVIEW: BIOTECHNOLOGICAL POTENTIAL OF	
	LIPASES FROM <i>Pseudomonas</i> : SOURCES, PROPERTIES AND	
	APPLICATIONS	35
2.1.	Abstract	36
2.2.	Lipases as biocatalysts	37
2.3.	Properties of lipases from Pseudomonas	38
2.3.1.	Optimal pH and temperature	40
2.3.2	Effect of metal ions and stability in organic solvents	40
2.3.3.	Effect of Detergent	40
2.3.4.	Substrate specificity	43
2.4.	Lipases from Pseudomonas: Production	44
2.4.1.	Molecular cloning (folding and secretion strategies)	44
2.4.2.	Influence of media composition and presence of substrates	48
2.4.2.1.	Carbon and nitrogen sources	48
2.4.2.2.	Other sources	50
2.5.	Purification of lipases from <i>Pseudomonas</i>	50
2.6.	Chemical modification of lipases from <i>Pseudomonas</i>	52
2.7.	Immobilization of lipases from <i>Pseudomonas</i>	55
2.7.1.	Adsorption of lipases from Pseudomonas	56
2.7.2.	Immobilization of lipases from Pseudomonas by covalent attachment	59
2.7.3.	Encapsulation of lipases from Pseudomonas	63
2.7.4.	Cross-linked enzyme aggregates of lipases from Pseudomonas	64
2.8.	Application of lipases from <i>Pseudomonas</i> as biocatalysts	65
2.8.1.	Hydrolysis reactions	65
2.8.2.	Esterification reaction	67
2.8.3.	Transesterification reaction	67

2.8.4.	Resolution of racemic mixtures	69
2.8.5.	Other applications	71
2.9.	Conclusion	71
2.10.	Acknowledgments	72
2.11.	References	72
3	IMMOBILIZATION OF LIPASE FROM Pseudomonas fluorescens ON	
	GLYOXYL-OCTYL-AGAROSE BEADS: IMPROVED STABILITY	
	AND REUSABILITY	102
3.1.	Abstract	103
3.2.	Introduction	104
3.3.	Materials and methods	106
3.3.1.	Materials	106
3.3.2.	Methods	107
3.3.2.1.	Immobilization of PFL on glyoxyl-octyl agarose	107
3.3.2.2.	Immobilization of PFL on octyl-agarose beads	107
3.3.2.3.	Determination of enzyme activity and protein concentration	107
3.3.2.4.	Lipase biocatalysts inactivations	107
3.3.2.5.	Desorption of PFL from the supports	108
3.3.2.6.	SDS-PAGE analysis of the different biocatalysts	108
3.3.2.7.	Hydrolysis of triacetin	108
3.4.	Results and discussion	109
3.4.1.	Immobilization of PFL on octyl and glyoxyl-octyl agarose beads	109
3.4.2.	Study of the stability different immobilized PFL biocatalysts under different	
	conditions	112
3.4.3.	Operational stability of the different preparations of PFL in hydrolysis of	
	triacetin in 60% dioxane	115
3.5.	Conclusions	116
3.6.	Acknowledgments	117
3.7.	References	117
4.	INCREASING THE ENZYME LOADING CAPACITY OF POROUS	
	SUPPORTS BY A LAYER-BY-LAYER IMMOBILIZATION	
	STRATEGY USING PEI AS GLUE	123
4.1.	Abstract	124

4.2.	Introduction	125
4.3.	Materials and methods	127
4.3.1.	Materials	127
4.3.2.	Methods	128
4.3.2.1.	Immobilization of PFL	128
4.3.2.1.1.	Immobilization of PFL on octyl agarose (OA)	128
4.3.2.1.2.	Coating of the immobilized enzyme with PEI	128
4.3.2.1.3.	Immobilization of PFL on PEI-coated biocatalysts	128
4.3.2.2.	Determination of enzymatic activities	129
4.3.2.2.1.	Hydrolysis of p-nitrophenyl butyrate (p-NPB)	129
4.3.2.2.2.	Hydrolysis of triacetin	129
4.3.2.3.	Electrophoresis SDS-PAGE	129
4.3.2.4.	Thermal inactivations	129
4.4.	Results and Discussion	130
4.4.1.	Immobilization of PFL on octyl agarose	130
4.4.2.	Coating of OA-PFL biocatalysts with PEI	131
4.4.3.	Immobilization of further PFL layers on OA-PFL-PEI biocatalyst	131
4.4.4.	Activity of the different PFL biocatalysts versus triacetin	134
4.4.5.	Treatment of the biocatalysts with glutaraldehyde	136
4.5.	Conclusions	139
4.6.	Acknowledgments	139
4.7.	References	140
5	REUSE OF LIPASE FROM <i>Pseudomonas fluorescens</i> VIA ITS STEP BY	
	STEP COIMMOBILIZATION ON GLYOXYL-OCTYL AGAROSE	
	BEADS WITH LESS STABLE LIPASES	145
5.1.	Abstract	146
5.2.	Introduction	147
5.3.	Materials and methods	150
5.3.1.	Materials	150
5.3.2.	Methods	150
5.3.2.1.	Immobilization of lipases on octyl-agarose beads	151
5.3.2.2.	Coimmobilization of lipases	151
5.3.2.3.	Determination of enzymatic activity and protein concentration	151

5.3.2.4.	Immobilized lipase inactivations	151
5.3.2.5.	Desorption of lipases from the support	152
5.3.2.6.	SDS-PAGE electrophoresis	152
5.4.	Results and discussion	152
5.4.1.	Immobilization on octyl-agarose and comparison of stabilities of immobilized	
	RML, LU and PFL	152
5.4.2.	Effect of detergent on PFL-glyoxyl-octyl stability	157
5.4.3.	Preparation of combi PFL-RML and Combi PFL-LU	159
5.4.4	Cycles of enzyme inactivation, inactivated enzyme desorption and new enzyme	
	loading	161
5.5.	Conclusions	161
5.6.	Acknowledgments	162
5.7.	References	162
6.	FURTHER STABILIZATION OF LIPASE FROM <i>Pseudomonas</i>	
	fluorescens IMMOBILIZED ON OCTYL COATED NANOPARTICLES	
	VIA CHEMICAL MODIFICATION WITH BIFUNCTIONAL	
	AGENTS	168
6.1.	Abstract	169
6.2.	Introduction	170
6.3.	Materials and methods	173
6.3.1.	Materials	173
6.3.2.	Methods	173
6.3.2.1.	Preparation of octyl-nanoparticles	173
6.3.2.1.1.	$Synthesis \ of \ superparamagnetic \ NiZnFe_2O_4 \ nanoparticles$	173
6.3.2.1.2.	Functionalization of NiZnFe2O4 nanoparticles with OTES	173
6.3.2.2.	Characterization of nanoparticles	174
6.3.2.3.	Immobilization of PFL on octyl-nanoparticles	174
6.3.2.4.	Chemical modification of OCTYL-NANO-PFL with GA, DVS and BQ	175
6.3.2.5.	Determination of enzymatic activity and protein concentration	175
6.3.2.6.	SDS-PAGE electrophoresis analyses	176
6.3.2.7.	Stress inactivation of different PFL biocatalysts	176
6.3.2.8.	Capture and reuse of the magnetic biocatalysts	177
6.4.	Results and discussion	177

6.4.1.	Characterization of superparamagnetic NiZnFe ₂ O ₄ nanoparticles before and	
	after enzyme immobilization	177
6.4.2.	Immobilization of PFL on octyl-nanoparticles	183
6.4.3.	Chemical modification of OCTYL-NANO-PFL with GA, DVS and BQ	184
6.4.4.	Effect of inactivation pH on the stability of the different PFL biocatalysts	186
6.4.5.	Loading capacity of OCTYL-NANO for PFL immobilization	188
6.4.6.	SDS-PAGE analysis of immobilized preparations	189
6.4.7.	Repetitive capture of the different OCTYL-NANO-PFL particles	190
6.5.	Conclusion	192
6.6.	Acknowledgements	192
6.7.	References	192
7.	COMPARISON OF THE IMMOBILIZATION OF LIPASE FROM	
	Pseudomonas fluorescens ON DIVINYLSULFONE OR P-	
	BENZOQUINONE ACTIVATED SUPPORT	204
7.1.	Abstract	205
7.2.	Introduction	206
7.3.	Materials and methods	209
7.3.1.	Materials	209
7.3.2.	Methods	209
7.3.2.1.	Synthesis of superparamagnetic NiZnFe2O4 nanoparticles	209
7.3.2.2.	Functionalization of superparamagnetic NiZnFe2O4 nanoparticles with	
	tetraethoxysilane (TEOS)	209
7.3.2.3.	Activation of TEOS functionalized nanoparticles with divinylsulfone (DVS) or	
	p-benzoquinone (BQ)	210
7.3.2.4.	Characterization of superparamagnetic modified and non-modified $NiZnFe_2O_4$	
	nanoparticles	210
7.3.2.5.	Immobilization of PFL on TEOS-NANO-DVS or TEOS-NANO-BQ	210
7.3.2.5.1.	Immobilization of PFL on no treated TEOS-NANO	211
7.3.2.6.	Enzyme activity	211
7.3.2.7.	Immobilization parameters	211
7.3.2.8.	Thermal inactivation of immobilized enzymes	211
7.3.2.9	Support loading capacity	212
7.3.2.10.	Operational stability of immobilized biocatalysts	212

7.4.	Results and discussion	212	
7.4.1.	Fourier Transform Infrared spectroscopy (FTIR) of TEOS_NiZnFe2O4	1	
	superparamagnetic nanoparticles	212	
7.4.2.	Effect of surfactants on the stability of PFL	213	
7.4.3.	Immobilization of PFL on TEOS-NANO support	216	
7.4.4.	Immobilization of PFL on TEOS-NANO-BQ support: optimization of the		
	support activation	216	
7.4.4.1.	Immobilization of Pseudomonas fluorescens lipase on TEOS-NANO-BQ)	
	support: optimization of immobilization conditions	218	
7.4.5.	Immobilization of PFL on TEOS-NANO-DVS support: optimization of	t	
	support activation	221	
7.4.6.	Enzyme load of TEOS-NANO-BQ-PFL and TEOS-NANO-PFL biocatalysts	224	
7.4.7.	Operational stability of immobilized PFL	225	
7.5.	Conclusion	225	
7.6.	Acknowledgements	226	
7.7.	References	226	
8.	FINAL CONSIDERATIONS	233	
8.1.	Final considerations	234	
9	APPENDIX	236	