Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/46614
Tipo: Artigo de Periódico
Título : On the evaluation of cost functions for parameter optimization of a multiscale shape descriptor
Título en inglés: On the evaluation of cost functions for parameter optimization of a multiscale shape descriptor
Autor : Souza, Marcelo Marques Simões de
Palabras clave : Shape description;Optimization;Clustering metrics;Shape retrieval;Shape classification
Fecha de publicación : 2017
Editorial : 2017 IEEE International Symposium on Signal Processing and Information Technology
Citación : SOUZA, M. M. S.
Abstract: Shape description often relies on parameter adjustment in order to configure a meaningful scale that enables a computer vision task. Instead of manual interaction, which is prohibitive for large datasets, an alternative solution towards supporting multiscale methodology is to apply metaheuristic optimization. Nevertheless, the cost function assigned to the optimization process is an open question that we fully address in this paper. Our investigation describes the influence of the cost function on the performance of an optimized multiscale shape descriptor using three distinct clustering metrics: the Silhouette, Davies-Bouldin and Calinski-Harabasz indices. Thus, we optimize the scale parameters of the Normalized Multiscale Bending Energy descriptor using the Simulated Annealing metaheuristic; both classification and retrieval experiments are conducted using a synthetic shape dataset (Kimia 99), two real plant leaf datasets (ShapeCN and Swedish) and the National Library of Medicine (NLM) pill image dataset (NLM Pills). Using the Bulls-eye ratio and the Accuracy measure, the performance evaluation showed that optimized descriptor with the Calinski-Harabasz cost function underperformed other functions for datasets where there is high level of dissimilarity between classes. Particularly for the NLM Pills, where each class has a well-defined pattern and differences within pill classes are quite small, the Normalized Multiscale Bending Energy descriptor did not benefit from the optimization methodology. We also present a qualitative assessment of the cluster arrangements produced by the Self-Organizing Map (SOM) which reinforced that the three cost functions performed differently within the optimized shape descriptor.
Descripción : SOUZA, M. M. S. On the evaluation of cost functions for parameter optimization of a multiscale shape descriptor. 2017. Artigo (2017 IEEE International Symposium on Signal Processing and Information Technology), New York, 2017.
URI : http://www.repositorio.ufc.br/handle/riufc/46614
Derechos de acceso: Acesso Aberto
Aparece en las colecciones: CSOBRAL - Artigos publicados em revistas científicas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2017_art_mmssouza.pdfSOUZA, M. M. S. On the evaluation of cost functions for parameter optimization of a multiscale shape descriptor. 2017. Artigo (2017 IEEE International Symposium on Signal Processing and Information Technology), New York, 2017.3,4 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.