Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/46614
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSouza, Marcelo Marques Simões de-
dc.date.accessioned2019-10-08T16:29:42Z-
dc.date.available2019-10-08T16:29:42Z-
dc.date.issued2017-
dc.identifier.citationSOUZA, M. M. S.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/46614-
dc.descriptionSOUZA, M. M. S. On the evaluation of cost functions for parameter optimization of a multiscale shape descriptor. 2017. Artigo (2017 IEEE International Symposium on Signal Processing and Information Technology), New York, 2017.pt_BR
dc.description.abstractShape description often relies on parameter adjustment in order to configure a meaningful scale that enables a computer vision task. Instead of manual interaction, which is prohibitive for large datasets, an alternative solution towards supporting multiscale methodology is to apply metaheuristic optimization. Nevertheless, the cost function assigned to the optimization process is an open question that we fully address in this paper. Our investigation describes the influence of the cost function on the performance of an optimized multiscale shape descriptor using three distinct clustering metrics: the Silhouette, Davies-Bouldin and Calinski-Harabasz indices. Thus, we optimize the scale parameters of the Normalized Multiscale Bending Energy descriptor using the Simulated Annealing metaheuristic; both classification and retrieval experiments are conducted using a synthetic shape dataset (Kimia 99), two real plant leaf datasets (ShapeCN and Swedish) and the National Library of Medicine (NLM) pill image dataset (NLM Pills). Using the Bulls-eye ratio and the Accuracy measure, the performance evaluation showed that optimized descriptor with the Calinski-Harabasz cost function underperformed other functions for datasets where there is high level of dissimilarity between classes. Particularly for the NLM Pills, where each class has a well-defined pattern and differences within pill classes are quite small, the Normalized Multiscale Bending Energy descriptor did not benefit from the optimization methodology. We also present a qualitative assessment of the cluster arrangements produced by the Self-Organizing Map (SOM) which reinforced that the three cost functions performed differently within the optimized shape descriptor.pt_BR
dc.language.isoenpt_BR
dc.publisher2017 IEEE International Symposium on Signal Processing and Information Technologypt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectShape descriptionpt_BR
dc.subjectOptimizationpt_BR
dc.subjectClustering metricspt_BR
dc.subjectShape retrievalpt_BR
dc.subjectShape classificationpt_BR
dc.titleOn the evaluation of cost functions for parameter optimization of a multiscale shape descriptorpt_BR
dc.typeArtigo de Periódicopt_BR
dc.title.enOn the evaluation of cost functions for parameter optimization of a multiscale shape descriptorpt_BR
Aparece nas coleções:CSOBRAL - Artigos publicados em revistas científicas

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2017_art_mmssouza.pdfSOUZA, M. M. S. On the evaluation of cost functions for parameter optimization of a multiscale shape descriptor. 2017. Artigo (2017 IEEE International Symposium on Signal Processing and Information Technology), New York, 2017.3,4 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.