Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/46470
Tipo: | Artigo de Periódico |
Título : | Evolutionary optimization of a multiscale descriptor for leaf shape analysis |
Título en inglés: | Evolutionary optimization of a multiscale descriptor for leaf shape analysis |
Autor : | Souza, Marcelo Marques Simoes de |
Palabras clave : | Shape analysis;Image processing;Data visualization;Evolutionary optimization;Leaf taxonomy |
Fecha de publicación : | 2016 |
Editorial : | Expert Systems with Applications |
Citación : | DE SOUZA, M. M. S. |
Abstract: | Shape analysis and recognition play an important role in the design of robust and reliable computer vision systems. Such systems rely on feature extraction to provide meaningful information and repre- sentation of shapes and images. However, accurate feature extraction is not a trivial task since it may depend on parameter adjustment, application domain and the shape data set itself. Indeed, there is a demand for computational tools to understand and support parameter adjustment and therefore unfold shape description representation, since manual parameter choices may not be suitable for real applica- tions. Our major contribution is the definition of an evolutionary optimization methodology that fully supports parameter adjustment of a multiscale shape descriptor for feature extraction and representation of leaf shapes in a high dimensional space. Here, intelligent evolutionary optimization methods search for parameters that best fit the normalized multiscale bending energy descriptor for leaf shape retrieval and classification. The simulated annealing, differential evolution and particle swarm optimization methods optimize an objective function, which is based on the silhouette measure, to achieve the set of optimal parameters. Our methodology improves leaf shape characterization and recognition due to the intrinsic shape differences which are embedded in the set of optimized parameters. Experiments were conducted on public benchmark data sets with the normalized multiscale bending energy and inner distance shape context descriptors. The visual exploratory data analysis techniques showed that the proposed methodol- ogy minimized the total within-cluster variance and thus, improved the leaf shape clustering. Moreover, supervised and unsupervised classification experiments with plant leaves accomplished high Precision and Recall rates as well as Bulls-eye scores with the optimized parameters. |
Descripción : | DE SOUZA, M. M. S. Evolutionary optimization of a multiscale descriptor for leaf shape analysis. 2016. Artigo (Expert Systems with Applications), 2016. |
URI : | http://www.repositorio.ufc.br/handle/riufc/46470 |
Derechos de acceso: | Acesso Aberto |
Aparece en las colecciones: | CSOBRAL - Artigos publicados em revistas científicas |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2016_art_mmssouza..pdf | DE DE SOUZA, M. M. S. Evolutionary optimization of a multiscale descriptor for leaf shape analysis. 2016. Artigo (Expert Systems with Applications), 2016. | 5,15 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.