Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/46470
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSouza, Marcelo Marques Simoes de-
dc.date.accessioned2019-10-03T17:04:47Z-
dc.date.available2019-10-03T17:04:47Z-
dc.date.issued2016-
dc.identifier.citationDE SOUZA, M. M. S.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/46470-
dc.descriptionDE SOUZA, M. M. S. Evolutionary optimization of a multiscale descriptor for leaf shape analysis. 2016. Artigo (Expert Systems with Applications), 2016.pt_BR
dc.description.abstractShape analysis and recognition play an important role in the design of robust and reliable computer vision systems. Such systems rely on feature extraction to provide meaningful information and repre- sentation of shapes and images. However, accurate feature extraction is not a trivial task since it may depend on parameter adjustment, application domain and the shape data set itself. Indeed, there is a demand for computational tools to understand and support parameter adjustment and therefore unfold shape description representation, since manual parameter choices may not be suitable for real applica- tions. Our major contribution is the definition of an evolutionary optimization methodology that fully supports parameter adjustment of a multiscale shape descriptor for feature extraction and representation of leaf shapes in a high dimensional space. Here, intelligent evolutionary optimization methods search for parameters that best fit the normalized multiscale bending energy descriptor for leaf shape retrieval and classification. The simulated annealing, differential evolution and particle swarm optimization methods optimize an objective function, which is based on the silhouette measure, to achieve the set of optimal parameters. Our methodology improves leaf shape characterization and recognition due to the intrinsic shape differences which are embedded in the set of optimized parameters. Experiments were conducted on public benchmark data sets with the normalized multiscale bending energy and inner distance shape context descriptors. The visual exploratory data analysis techniques showed that the proposed methodol- ogy minimized the total within-cluster variance and thus, improved the leaf shape clustering. Moreover, supervised and unsupervised classification experiments with plant leaves accomplished high Precision and Recall rates as well as Bulls-eye scores with the optimized parameters.pt_BR
dc.language.isoenpt_BR
dc.publisherExpert Systems with Applicationspt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectShape analysispt_BR
dc.subjectImage processingpt_BR
dc.subjectData visualizationpt_BR
dc.subjectEvolutionary optimizationpt_BR
dc.subjectLeaf taxonomypt_BR
dc.titleEvolutionary optimization of a multiscale descriptor for leaf shape analysispt_BR
dc.typeArtigo de Periódicopt_BR
dc.title.enEvolutionary optimization of a multiscale descriptor for leaf shape analysispt_BR
Aparece nas coleções:CSOBRAL - Artigos publicados em revistas científicas

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2016_art_mmssouza..pdfDE DE SOUZA, M. M. S. Evolutionary optimization of a multiscale descriptor for leaf shape analysis. 2016. Artigo (Expert Systems with Applications), 2016.5,15 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.