Please use this identifier to cite or link to this item: http://repositorio.ufc.br/handle/riufc/20959
Type: Dissertação
Title: Teorema de Borsuk no plano
Title in English: Borsuk's theorem in the plane
Authors: Felício, Milínia Stephanie Nogueira Barbosa
Advisor: Silva, Jonatan Floriano da
Keywords: Teorema de Borsut;Geometria plana;Diâmetro de figuras planas
Issue Date: 2016
Citation: FELÍCIO, Milínia Stephanie Nogueira Barbosa. Teorema de Borsut no plano. 2016. 88f. Dissertação (Mestrado em Matemática em Rede Nacional) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016.
Abstract in Brazilian Portuguese: O trabalho versa sobre o Teorema de Borsuk, com ênfase na dimensão 2. O teorema gira em torno da pergunta: “Qual o menor número de partes que podemos dividir uma região, de modo a garantir que em cada parte, o diâmetro seja menor que o diâmetro da região inicial?”. Borsuk prova que o número de divisões necessárias no plano é menor ou igual a 3, a fim de garantir regiões com diâmetros menores. Neste trabalho apresentamos uma prova para o teorema acima. Ao criar o minicurso “Teorema de Borsuk no Plano” e aplicar com alunos do terceiro ano do ensino médio do Colégio Jenny Gomes, propôs-se revisar conceitos fundamentais de conhecimento prévio do aluno em Geometria Plana, diagnosticar deficiências básicas nesses conceitos, despertar a investigação e empenho na disciplina, além de manipular um conteúdo ainda não visto por eles, apresentando-lhes também o cenário histórico do teorema. Os alunos inscreveram-se voluntariamente. Para coleta de dados foram utilizados, um questionário socioeconômico, testes de caráter motivacional e testes de conhecimentos, antes e após o curso. O Teorema de Borsuk no plano faz uso somente de geometria elementar e pode ser compreendido por alunos do ensino médio. Novos conceitos como diâmetro de um figura plana qualquer, retas de apoio e Lema de Pall serão apresentados. Verificou-se que a atividade é uma ferramenta eficaz contra o desinteresse e dificuldade dos alunos em Geometria.
Abstract: This paper deals with the Borsuk Theorem, focusing on dimension 2. The theorem revolves around the question: "What is the smallest number of parts that a region can be divided into, to ensure that in each part the diameter is less than the diameter of the initial region?" Borsuk proves that the required number of divisions in the plan is less than or equal to 3, to ensure smaller diameter regions. In this paper we present a proof for the theorem above. When creating the minicourse “Borsuk Theorem in the Plane” and applying it to senior students from Jenny Gomes State School, it was proposed to review fundamental concepts of students’ prior knowledge in Plane Geometry, determine core deficiencies in these concepts and make students eager to acquire investigation and commitment around the subject, besides handling a content yet-unseen by them, presenting also the historical scenario of the theorem. Students enrolled willingly in the course. For data collection it was used a socioeconomic questionnaire, motivational basis tests and knowledge tests, before and after the course. The Borsuk theorem in the plan makes use only of elementary geometry and can be understood by high school students. New concepts such as diameter of a flat figure, lines of support and Pall Lemma will be presented. It was found that the activity is an effective tool against the disinterest and difficulty of students regarding Geometry.
URI: http://www.repositorio.ufc.br/handle/riufc/20959
Appears in Collections:PROFMAT - Dissertações defendidas na UFC

Files in This Item:
File Description SizeFormat 
dis_2016_msnbfelicio.pdf2,47 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.